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FOREWORD 

 

The Self Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university’s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to 

the topic of study and to kindle the learner’s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every 

possibility for some omission or inadequacy in few areas or topics, 

which would definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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BLOCK-1 FIELD EXTENSION AND 

GALOIS THEORY 

 

In mathematics, Galois theory provides a connection between field 

theory and group theory. Using Galois theory, certain problems in field 

theory can be reduced to group theory, which is in some sense simpler 

and better understood. It has been used to solve classic problems 

including showing that two problems of antiquity cannot be solved as 

they were stated (doubling the cube and trisecting the angle; a third 

problem of antiquity, squaring the circle, is also unsolvable, but this is 

shown by other methods); showing that there is no quintic formula; and 

showing which polygons are constructible. 

 

The subject is named after Évariste Galois, who introduced it for 

studying the roots of a polynomial and characterizing the polynomial 

equations that are solvable by radicals in terms of properties of 

the permutation group of their roots—an equation is solvable by 

radicals if its roots may be expressed by a formula involving 

only integers, nth roots, and the four basic arithmetic operations. 

 

The theory has been popularized among mathematicians and developed 

by Richard Dedekind, Leopold Kronecker, Emil Artin, and others who 

interpreted the permutation group of the roots as the automorphism 

group of a field extension. 

Galois theory has been generalized to Galois 

connections and Grothendieck's Galois theory. 



 

6 

UNIT-1 INTRODUCTION TO THE 

FIELD THEORY I 
 

STRUCTURE 

1.0 Objectives 

1.1 Introduction 

1.2 Rings 

1.3 Fields 

1.3.1The characteristic of a field: 

1.4 Review of polynomial rings 

1.5 Factoring polynomials 

1.6 Extension fields 

1.6.1 The subring generated by a subset 

1.6.2 The subfield generated by a subset 

1.7 Construction of some extension fields 

1.8 Let us sum up 

1.9 Keywords 

1.10 Questions for Review 

1.11 Suggested Reading and References 

1.12 Answers to Check your Progress 

1.0 OBJECTIVES 
 

Understand the concept of Rings 

Understand the concept of Fields 

Enumerate the polynomial rings 
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Understand the concept of Factoring polynomials 

Enumerate the Extension fields 

Understand the Construction of some extension fields 

1.1 INTRODUCTION 
 

Galois Theory uncovers a relationship between the structure of groups 

and the structure of fields. It then uses this relationship to describe how 

the roots of a polynomial relate to one another. 

1.2 RINGS 
 

A ring is a set R with two binary operations + and  –  such that 

(a) (R, +) / is a commutative group; 

(b)    is associative, and there exists an element 1R such that a       

       for all a ∈ R; 

(c) the distributive law holds: for all a,b,c ∈ R, 

(   )            

  (   )          

We usually omit ―.‖ and write 1 for 1R when this causes no confusion. If 

1R = 0, then R = {0}. 

A subring of a ring R is a subset S that contains 1R and is closed under 

addition, passage to the negative, and multiplication. It inherits the 

structure of a ring from that on R. 

A homomorphism of rings α: R→ R' is a map such that 

 

for all a;b ∈ R. A ring R is said to be commutative if multiplication is 

commutative: 
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A commutative ring is said to be an integral domain if 1R≠ 0 and the 

cancellation law holds for multiplication: 

 

 

 

An ideal I in a commutative ring R is a subgroup of (R,C) that is closed 

under multiplication by elements of R: 

 

 

 

The ideal generated by elements a1, …, an is denoted by  (a1, …, an).  For 

example, (a) is the principal ideal aR. 

For example, in Z (more generally, any Euclidean domain) an ideal I is 

generated by any ―smallest‖ nonzero element of I , and unique 

factorization into powers of prime elements holds. 

1.3 FIELDS 
 

A field is a set F with two composition laws C and such that 

 

(a) ( F, +)  is a commutative group; 

(b)  (    ) where    = F ∖{0}, is a commutative group; 

(c) the distributive law holds. 

 

Thus, a field is a nonzero commutative ring such that every nonzero 

element has an inverse. In particular, it is an integral domain. A field 

contains at least two distinct elements, 0 and 1. The smallest, and one of 

the most important, fields is  2 =  /2  = {0;1}. 

 

A subfield S of a field F is a subring that is closed under passage to the 

inverse. It inherits the structure of a field from that on F . 

 

LEMMA:  A nonzero commutative ring R is a field if and only if it has 

no ideals other than (0) and R. 
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PROOF. Suppose that R is a field, and let I be a nonzero ideal in R. If a 

is a nonzero element of I , then 1 = a 
–1

 a ∈ I , and so I = R. Conversely, 

suppose that R is a commutative ring with no proper nonzero ideals. If a 

≠ 0, then (a) = R, and so there exists a b in R such that ab = 1.  

 

EXAMPLE: The following are fields:            /p , (p prime). 

 

A homomorphism of fields is simply a homomorphism of rings. Such a 

homomorphism is always injective, because its kernel is a proper ideal (it 

doesn’t contain 1), which must therefore be zero.  

Let F be a field. An F -algebra (or algebra over F ) is a ring R containing 

F as a subring (so the inclusion map is a homomorphism). A 

homomorphism of F -algebras α: R→R' is a homomorphism of rings such 

that α(c) = c for every c ∈ F .  

 

1.3.1The characteristic of a field: 

 One checks easily that the map: 

 

 

 is a homomorphism of rings. For example,  

 

 

  

 

because of the associativity of addition. Therefore its kernel is an ideal in 

 .  

CASE 1: The kernel of the map is (0), so that  

 

 

 

Nonzero integers map to invertible elements of F under         →

 , and so this map extends to a homomorphism 
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Thus, in this case, F contains a copy of  , and we say that it has 

characteristic zero. 

 

CASE 2: The kernel of the map is ≠ (0), so that n  1F = 0 for some n ≠ 0. 

The smallest positive such n will be a prime p (otherwise there will be 

two nonzero elements in F whose product is zero), and p generates the 

kernel. Thus, the map         →   defines an isomorphism from 

 /p  onto the subring 

 

 

 

of F . In this case, F contains a copy of  p, and we say that it has 

characteristic p. 

The fields   ,   ,   ,…,  are called the prime fields. Every field 

contains a copy of exactly one of them. 

 

REMARK: The usual proof by induction shows that the binomial 

theorem 

 

 

 

holds in any commutative ring. If p is prime, then p divides p rn for all r 

with        .  Therefore, when F has characteristic p 

 

 

and so the map         is a homomorphism. It is called the 

Frobenius endomorphism of F. When F is finite, the Frobenius 

endomorphism is an automorphism. 

Check your Progress-1 
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1. Define ring 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2.   Explain Field 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

1.4 REVIEW OF POLYNOMIAL RINGS 
 

Let F be a field. 

The ring F [X] of polynomials in the symbol (or ―indeterminate‖ or 

―variable‖) X with coefficients in F is an F -vector space with basis 1, X, 

. . . , X
n
, . . . , and with the multiplication 

 

 

The F -algebra F [X] has the following universal property: for any F -

algebra R and element r of R, there is a unique homomorphism of F -

algebras ˛      →   such that α(X) = r 

Division algorithm: given f (X), g(X) ∈ F [X] with g ≠ 0, there exist 

q(X), r(X) ∈ F [X]• with r = 0 or deg(r)< deg(g) such that 

               

moreover, q(X) and r(X) are uniquely determined. Thus F [X] is a 

Euclidean domain with deg as norm, and so it is a unique factorization 

domain. 

Let f ∈ F [X]be no constant, and let a ∈ F . The division algorithm shows 

that  
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with q ∈ F [X] and c ∈ F . Therefore, if a is a root of f (that is, f (a) = 0), 

then X – a  divides f . From unique factorization, it now follows that f 

has at most deg(f ) roots 

Euclid’s algorithm: Let f (X), g(X) ∈ F [X]. Euclid’s algorithm 

constructs polynomials a(X), b(X), and d(X)such that 

and d(X) = gcd(f,g) 

Recall how it goes. We may assume that deg (f )≥  deg(g) since the 

argument is the same in the opposite case. Using the division algorithm, 

we construct a sequence of quotients and remainder 

 

 

 

 

 

with rn the last nonzero remainder. Then, rn divides rn – 1  hence g, and 

hence f . Moreover, 

 

and so every common divisor of f and g divides rn: we have shown rn = 

gcd(f,g). Let af + bg =  d. If deg(a)  ≥ deg(g), write a = gq + r with deg(r) 

<  deg (g); then 

 

and b + qf automatically has degree < deg(f ). 

 

 PARI knows how to do Euclidean division: typing divrem (13,5) in 

PARI returns [2;3], meaning that 13 =  2   5+ 3, and gcd(m,n) returns 

the greatest common divisor of m and n. 
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Let I be a nonzero ideal in F [X], and let f be a nonzero polynomial of 

least degree in I ; then I = (f) (because F [X] is a Euclidean domain).  

When we choose f to be monic, i.e., to have leading coefficient one, it is 

uniquely determined by I. Thus, there is a one-to-one correspondence 

between the nonzero ideals of F [X] and the monic polynomials in F [X]. 

The prime ideals correspond to the irreducible monic polynomials. 

As F [X] is an integral domain, we can form its field of fractions F(X). 

Its elements are quotients f /g, f and g polynomials, g ≠ 0 

1.5 FACTORING POLYNOMIALS 
 

The following results help in deciding whether a polynomial is reducible, 

and in finding its factors. 

 

PROPOSITION: Let r ∈   be a root of a polynomial 

 

 

 

and write r = c/d, c,d ∈ Z, gcd(c; d ) = 1. Then c|a0 and d|am: 

 

PROOF. It is clear from the equation 

 

 

 

that d|amc
m

, and therefore, d|am: Similarly, c|a0.  

 

EXAMPLE: The polynomial f (X) = X
3
 – 3X – 1 is irreducible in Q[X] 

because its only possible roots are  1, and f (1) ≠ 0 ≠ f ( – 1 ).  

PROPOSITION (GAUSS’S LEMMA):  Let f (X) ∈ Z[X]. If f (X) 

factors nontrivially in Q[X], then it factors nontrivially in Z[X]. 

 PROOF. Let f = gh in  [X] with g; h nonconstant. For suitable integers 

m and n, g1     
       

 mg and h1     
       

 nh have coefficients in  , and so we 

have a factorization  
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If a prime p divides mn, then, looking modulo p, we obtain an equation  

 

 

Since    [X] is an integral domain, this implies that p divides all the 

coefficients of at least one of the polynomials g1; h1, say g1, so that g1 = 

pg2 for some g2∈ Z[X]. Thus, we have a factorization. 

 

 

 

Continuing in this fashion, we eventually remove all the prime factors of 

m, n, and so obtain a nontrivial factorization of f in Z[X] 

 

PROPOSITION If f ∈ Z[X] is monic, then every monic factor of f in 

 [X] lies in Z[X]. 

 

 PROOF. Let g be a monic factor of f in Q[X], so that f = gh with h ∈ 

 [X] also monic. Let m; n be the positive integers with the fewest prime 

factors such that mg, nh ∈  [X]. As in the proof of Gauss’s Lemma, if a 

prime p divides m,n, then it divides all the coefficients of at least one of 

the polynomials mg, nh, say mg, in which case it divides m because g is 

monic. Now m/ p g ∈  [X], which contradicts the definition of m.  

 

PROPOSITION (EISENSTEIN’S CRITERION): Let 

 

 

suppose that there is a prime p such that: 

p does not divide am, 

p divides am-1,…, a0 

p
2 

does not divide a0. 

Then f is irreducible in  [X]. 
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PROOF. If f(X) factors nontrivially in Q[X], then it factors nontrivially 

in  [X], say, 

 

with bi,ci ∈   and r,s < m. Since p, but not p
2
, divides a0 = b0c0, p must 

divide exactly one of b0, c0, say, b0. Now from the equation 

 

 

we see that p|b1; and from the equation 

 

 

that p|b2. By continuing in this way, we find that p divides b0;b1…,br, 

which contradicts the condition that p does not divide am.  

The last three propositions hold mutatis mutandis with Z replaced by a 

unique factorization domain R (replace Q with the field of fractions of R 

and p with a prime element of R). 

REMARK :There is an algorithm for factoring a polynomial in  [X]. 

To see this, consider f ∈  [X]. Multiply f (X)by a rational number so 

that it is monic, and then replace it by     ( ) f (X/D) with D equal to a 

common denominator for the coefficients of f , to obtain a monic 

polynomial with integer coefficients. Thus we need consider only 

polynomials. 

 

 

From the fundamental theorem of algebra, we know that f splits 

completely in  [X]• 
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From the equation 

 

 

 

it follows that |αi| is less than some bound depending only on the degree 

and coefficients of f ; in fact, 

 

 

Now if g(X) is a monic factor of f (X), then its roots in   are certain of 

the  αi, and its coefficients are symmetric polynomials in its roots. 

Therefore, the absolute values of the coefficients of g(X) are bounded in 

terms of the degree and coefficients of f. Since they are also integers we 

see that there are only finitely many possibilities for g(X). Thus, to find 

the factors of f (X) we (better PARI) have to do only a finite amount of 

checking 

 

1.6 EXTENSION FIELDS 
 

A field E containing a field F is called an extension field of F (or simply 

an extension of F , and we speak of an extension E/F ). Such an E can be 

regarded as an F -vector space. 

The dimension of E as an F -vector space is called the degree of E over F 

, and is denote by [E:F]. We say that E is finite over F when it has finite 

degree over F. 

When E and E' are extension fields of F , an F -homomorphism E → E' is 

a homomorphism  :E→E' such that   (c) = c for all c ∈ F . 

 

EXAMPLE: (a) The field of complex numbers   has degree 2 over R 

(basis {1;i})  

(b) The field of real numbers R has infinite degree over  : the field   is 

countable, and so every finite-dimensional   -vector space is also 

countable, but a famous argument of Cantor shows that R is not 

countable. 
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(c) The field of Gaussian numbers 

 

 

has degree 2 over   (basis {1;i}). 

(d) The field F.X/ has infinite degree over F ; in fact, even its subspace 

F[X] has infinite dimension over F (basis 1,X,X
2
;…). 

 

PROPOSITION (MULTIPLICATIVITY OF DEGREES) Consider 

fields L   E   F. Then L=F is of finite degree if and only if L=E and E=F 

are both of finite degree, in which case 

 

 

 

PROOF. If L is finite over F , then it is certainly finite over E; moreover, 

E, being a subspace of a finite-dimensional F -vector space, is also finite-

dimensional. Thus, assume that L/E and E/F are of finite degree, and let 

(ei) 1  i  m be a basis for E as an F -vector space and let (lj) 1 j  n be a 

basis for L as an E-vector space. To complete  the proof of the 

proposition, it suffices to show that (eilj) 1  i  m, 1  j  n  is a basis for L 

over F , because then L will be finite over F of the predicted degree. 

 

First, (ei lj)i, j spans L. Let γ ∈ L. Then, because (lj)j spans L as an E-

vector space, 

 

 

 

and because (ei)i spans E as an F -vector space, 

 

 

 

On putting these together, we find that 
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Second, (ei lj)i, j is linearly independent. A linear relation ∑        = 0, aij 

∈ F , can be rewritten ∑ (∑       )    = 0. The linear independence of the 

lj ’s now shows that ∑        = 0 for each j , and the linear independence 

of the ei’s shows that each aij = 0 

 

1.6.1 The subring generated by a subset: 

 

An intersection of subrings of a ring is again a ring (this is easy to 

prove). Let F be a subfield of a field E, and let S be a subset of E. The 

intersection of all the subrings of E containing F and S is obviously the 

smallest subring of E containing both F and S. We call it the subring of E 

generated by F and S (or generated over F by S), and we denote it by 

F[S]. 

 

When S = {α1,…αn}we write F[α1,…αn] for F[S]. For example,   

  √    .  

 

LEMMA The ring F[S] consists of the elements of E that can be 

expressed as finite sums of the form  

 

PROOF. Let R be the set of all such elements. Obviously, R is a subring 

of E containing F and S and contained in every other such subring. 

Therefore it equals F[S]. • 

 

EXAMPLE The ring     , π = 3:14159…, consists of the real numbers 

that can be expressed as a finite sum 

 

 

 

The ring     , consists of the complex numbers of the form a + bi, a, b ∈ 

Q. 

Note that the expression of an element in the form (1) will not be unique 

in general. This is so already in R[i]. 
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LEMMA: Let R be an integral domain containing a subfield F (as a 

subring). If R is finite-dimensional when regarded as an F -vector space, 

then it is a field. 

 

PROOF. Let α be a nonzero element of R — we have to show that ˛ has 

an inverse in R. 

The map x   α x : R→R is an injective linear map of finite-dimensional 

F -vector spaces, and is therefore surjective. In particular, there is an 

element β ∈ R such that ˛αβ =  1. 

Note that the lemma applies to the subrings containing F of an extension 

field E of F of finite degree. 

1.6.2 The subfield generated by a subset 

 

An intersection of subfields of a field is again a field. Let F be a subfield 

of a field E, and let S be a subset of E. The intersection of all the 

subfields of E containing F and S is obviously the smallest subfield of E 

containing both F and S. We call it the subfield of E generated by F and 

S (or generated over F by S), and we denote it F.S/. It is the field of 

fractions of F [S] in E because this is a subfield of E containing F and S 

and contained in every other such field. When S = {α1,…αn}, we write 

F(α1,…αn) for F(S). Thus, F[α1,…αn] consists of all elements of E that 

can be expressed as polynomials in the αi with coefficients in F , and 

F(α1,…αn) consists of all elements of E that can be expressed as a 

quotient of two such polynomials. 

 

Lemma shows that F [S] is already a field if it is finite-dimensional over 

F , in which case F(S) = F [S]. 

 

EXAMPLE:  (a) The field     , π = 3:14…, consists of the complex 

numbers that can be expressed as a quotient 
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(b) The ring      •is already a field. 

An extension E of F is said to be simple if E = F(α )some α ∈ E. For 

example,     , and     are simple extensions of  . 

 

Let F and F'  be subfields of a field E. The intersection of the subfields of 

E containing both F and F' is obviously the smallest subfield of E 

containing both F and F'. We call it the composite of F and F' in E, and 

we denote it by F  F'. It can also be described as the subfield of E 

generated over F by F 0, or the subfield generated over F'by F : 

 

 

 

Check your Progress-2 

3. Explain  Euclid’s algorithm. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4.   Explain - The subfield generated by a subset 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

1.7 CONSTRUCTION OF SOME 

EXTENSION FIELDS 
 

Let f (X) ∈ F [X] be a monic polynomial of degree m, and let (f ) be the 

ideal generated by f . Consider the quotient ring F [X] /(f (X)), and write 

x for the image of X in 

F [X] /(f (X)), i.e., x is the coset X + (f (X))/. 

(a) The map 
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is a homomorphism sending f (X) to 0. Therefore, f (x) = 0. 

(b) The division algorithm shows that each element g of F [X] =(f ) is 

represented by a unique polynomial r of degree < m. Hence each element 

of F [x] can be expressed uniquely as a sum 

 

(c) To add two elements, expressed in the form (2), simply add the 

corresponding coefficients. 

(d) To multiply two elements expressed in the form (2), multiply in the 

usual way, and use the relation f (x) = 0 to express the monomials of 

degree ≥ m in x in terms of lower degree monomials. 

(e) Now assume that f (X) is irreducible. Then every nonzero α ∈ F [x]  

has an inverse, which can be found as follows. Use (b) to write α = g(x) 

with g(X) a polynomial of degree   m – 1, and use Euclid’s algorithm in 

F [X] to obtain polynomials a(X) and b(X) such that 

 

 

with d(X)the gcd of f and g. In our case, d(X)is 1 because f (X) is 

irreducible and deg g(X) < deg f (X). When we replace X with x, the 

equality becomes 

       b(x) g(x) = 1 

Hence b(x) is the inverse of g(x). 

From these observations, we conclude: 

 

For a monic irreducible polynomial f (X) of degree m in F [X]•,is a field 

of degree m over F . Moreover, computations in F [x]• reduce to 

computations in F . 

 

Note that, because F [x] is a field, F(x) = F [x]• 

 

1.8 LET US SUM UP 
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We have studied the basic concepts that are involved in Field Extension 

and Galois Theory. 

1.9 KEYWORDS 
 

Subset : A set A is a subset of another set B if all elements of the set A 

are elements of the set B.  

Inherits -  to take or receive  

Commutative ring is a ring in which the multiplication operation 

is commutative 

1.10 QUESTIONS FOR REVIEW 
 

1. Let E =  [α], where α
3
- α

2
+ α+ 2 = 0. Express (α

2
+ α +1)(α

2
 – 1) and 

(α – 1) 
–1 

in the form a α
2
+b α +c with a,b,c ∈ Q.  

2. Let F be a field, and let f (X) ∈ F [X]. 

(a) For every a ∈ F , show that there is a polynomial q(X) ∈ F [X] such 

that 

f (X) = q(X)(X – a)+ f (a) 

(b) Deduce that f (a) = 0 if and only if (X – a)|f (X). 

(c) Deduce that f (X) can have at most deg f roots. 
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1.12 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1.  Provide the definition – 1.2  

2. Provide explanation  – 1.3 

3. Provide explanation – 1.4 

4. Provide explanation – 1.6.2  
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UNIT-2 INTRODUCTION TO THE 

FIELD THEORY II 
 

STRUCTURE 

2.0 Objectives 

2.1 Introduction 

2.2 Stem fields 

2.3 Algebraic and transcendental elements 

2.3.1 Transcendental numbers . 

2.4 Constructions with straight-edge and compass. 

2.5 Algebraically closed fields 

2.6 Let us sum up 

2.7 Keywords 

2.8 Questions for Review 

2.9 Suggested Reading and References 

2.10 Answers to Check your Progress 

2.0 OBJECTIVES 
 

Understand the concept of Stem fields. 

Understand the concept of  Algebraic and transcendental elements 

Enumerate Constructions with straight-edge and compass 

Understand the concept of  Algebraically closed fields 

2.1 INTRODUCTION 
 

There are two problems which provide some motivation for studying 

Galois theory - the existence of polynomials which aren't soluble by 
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radicals, and some results about classical Euclidean geometry, for 

example that you cannot trisect an angle using a ruler and compass, and 

that certain regular polygons cannot be constructed using a ruler and 

compass. 

 

2.2 STEM FIELDS 
 

Let f be a monic irreducible polynomial in F [X]. A pair (E, α) consisting 

of an extension E of F and an α ∈ E is called a stem field for f if E = F[α] 

and f (α) = 0. For example, the pair (E, α) with E = F [X] /(f ) = F [x]• 

and α = x is a stem field for f . Let (E, α) be a stem field, and consider the 

surjective homomorphism of F –algebras 

 

 

Its kernel is generated by a nonzero monic polynomial, which divides f , 

and so must equal it. Therefore the homomorphism defines an F –

isomorphism 

 

 

 

In other words, the stem field (E, α) of f is F -isomorphic to the standard 

stem field (F [X])/(f ),x). It follows that every element of a stem field (E, 

α) for f can be written uniquely in the form 

 

 

 

and that arithmetic in F [α] can be performed using the same rules as in F 

[x]. If (E', α') is a second stem field for f, then there is a unique F -

isomorphism E → E' sending α to α'. We sometimes abbreviate ―stem 

field (F [α], α )‖ to ―stem field F [α] ‖. 

 

2.3 ALGEBRAIC AND 

TRANSCENDENTAL ELEMENTS 
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For a field F and an element α of an extension field E, we have a 

homomorphism 

 

 

There are two possibilities. 

 

CASE 1: The kernel of the map is (0), so that, for f ∈ F [X], 

 

 

 

In this case, we say that α transcendental over F. The homomorphism X 

 α : F[X] → F[α]  is an isomorphism, and it extends to an isomorphism 

F(X) → F(α) on the fields of fractions. 

 

CASE 2: The kernel is ≠ (0), so that g(α) = 0 for some nonzero g ∈ F 

[X]. In this case, we say that α is algebraic over F. The polynomials g 

such that g(α) =0 form a nonzero ideal in F [X], which is generated by 

the monic polynomial f of least degree such f (α) = 0. We call f the 

minimum (or minimal) polynomial of α over F. It is irreducible, because 

otherwise there would be two nonzero elements of E whose product is 

zero. The minimum polynomial is characterized as an element of F[X] by 

each of the following conditions: 

o  f is monic, f(α) = 0, and f divides every other g in F [X]such that 

g(α) = 0; 

o  f is the monic polynomial of least degree such that f (α) = 0; 

o  f is monic, irreducible, and f (α) = 0. 

 

Note that g(X)   g(α) defines an isomorphism F [X] /(f ) → F[α]. Since 

the first is a field, so also is the second: 

 

F(α) = F[α] 

 

Thus, F[α] is a stem field for f . 
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EXAMPLE: Let α ∈   be such that α
3
 – 3α – 1= 0. Then X

3
 – 3X – 1 is 

monic, irreducible, and has α as a root, and so it is the minimum 

polynomial of α over  . The set {1, α, α
2
} is a basis for  [α]  over  .  

 

REMARK : PARI knows how to compute in Q[α]. For example, 

factor(X^4+4) returns the factorization 

 

 

 

in  [X] . Now type nf = nfinit(a^2+2*a+2) to define a number field ―nf‖ 

generated over   by a root a of X
2
+2X+2. Then nf factor(nf, x^4+4) 

returns the factorization 

 

 

in  [a] . 

 

A extension E/F of fields is said to be algebraic (and E is said to be 

algebraic over F ), if all elements of E are algebraic over F ; otherwise it 

is said to be transcendental (and E is said to be transcendental over F ). 

Thus, E/F is transcendental if at least one element of E is transcendental 

over F. 

 

PROPOSITION : Let E   F be fields. If E/F is finite, then E is algebraic 

and finitely generated (as a field) over F ; conversely, if E is generated 

over F by a finite set of algebraic elements, then it is finite over F . 

 

PROOF.  To say that α is transcendental over F amounts to saying that 

its powers 1,α,α
2
,… are linearly independent over F . Therefore, if E is 

finite over F, then it is algebraic over F. It remains to show that E is 

finitely generated over F. If E = F, then it is generated by the empty set. 

Otherwise, there exists an α1 ∈ E XF . If E ≠ F Œ˛1•, there 

exists an ˛2 2 E ∖ F [α1] , and so on. Since 
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this process terminates with E = F [α1,α2,…]. 

 : Let E = F(α1,…, αn).with α1,α2,… αn algebraic over F . The extension 

F(α1) / F is finite because α1 is algebraic over F, and the extension F(α1, 

α2) / F(α1)  is finite because α2is algebraic over F and hence over F(α1)  

Thus, F(α1, α2)is finite over F. 

Now repeat the argument.  

 

COROLLARY: (a) If E is algebraic over F , then every subring R of E 

containing F is a field. 

(b) Consider fields L   E   F. If L is algebraic over E and E is 

algebraic over F , then L is algebraic over F. 

PROOF. (a) If α ∈ R, then F [α]   R. But F [α] is a field because α is 

algebraic and so R contains α1.  

(b) By assumption, every  α ∈ L is a root of a monic polynomial  

 

 

 

 

Each of the extensions  

 

is generated by a single algebraic element, and so is finite. Therefore F 

[a0,…,am – 1,α];˛is finite over F which implies that α is algebraic over F .  

 

2.3.1 Transcendental numbers : 

 

A complex number is said to be algebraic or transcendental according as 

it is algebraic or transcendental over Q. First some history:  

1844: Liouville showed that certain numbers, now called Liouville 

numbers, are transcendental.  

1873: Hermite showed that e is transcendental.  

1874: Cantor showed that the set of algebraic numbers is countable, but 

that R is not countable. Thus most numbers are transcendental (but it is 
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usually very difficult to prove that any particular number is 

transcendental).  

1882: Lindemann showed that  is transcendental.  

1934: Gel’fond and Schneider independently showed that    is 

transcendental if α and β are algebraic,   ≠ 0,1, and β ∉ Q. (This was the 

seventh of Hilbert’s famous problems.)  

2018: Euler’s constant 

 

 

 

 

has not yet been proven to be transcendental or even irrational.  

 

2018: The numbers e + π and e – π  are surely transcendental, but again 

they have not even been proved to be irrational!  

 

PROPOSITION: The set of algebraic numbers is countable.  

 

PROOF. Define the height h(r) of a rational number to be max(|m|;|n|), 

where r = m/n is the expression of r in its lowest terms. There are only 

finitely many rational numbers with height less than a fixed number N . 

Let A(N) denote the set of algebraic numbers whose minimum equation 

over   has degree   N and has coefficients of height < N . Then 

A(N ) is finite for each N . Choose a bijection from some segment 

[0,n(1)] of N onto A(10), extend it to a bijection from a segment [0,n(2)] 

onto A(100), and so on. 

A typical Liouville number is  

 

  

 

in its decimal expansion there are increasingly long strings of zeros. 

Since its decimal expansion is not periodic, the number is not 

rational. We prove that the analogue of this number in base 2 is 

transcendental. 

 



Notes 

30 

THEOREM: The number     ∑
 

     is transcendental. 

PROOF: Suppose not, and let 

 

 

 

be the minimum polynomial of α over  . Thus [  [α]: ] = d. Choose a 

nonzero integer D such that D  f (X) ∈   [X]•. 

Let ∑  ∑
 

   
 
    , so that ∑ →    as N →  , and let xN = f (∑   ). As α 

is not rational, f (X), being irreducible of 

degree > 1, has no rational root. Since ∑   ≠ α , it can’t be a root of f 

(X), and so xN ≠ 0. Obviously, xN ∈  ; in fact , and so 

 

 

 

 

From the fundamental theorem of algebra (see 5.6 below), we know that 

f splits in  [X] say, 

 

 

 

And so 

 

But 

 

Hence 
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Check your Progress-1 

1. State the characters of  the minimum polynomial. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. Prove :  The number     ∑
 

     is transcendental. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

2.4 CONSTRUCTIONS WITH STRAIGHT-

EDGE AND COMPASS. 
 

The Greeks understood integers and the rational numbers. They were 

surprised to find that the length of the diagonal of a square of side 1, 

namely, √ , is not rational. They thus realized that they needed to extend 

their number system. They then hoped that the ―constructible‖ numbers 

would suffice. Suppose we are given a length, which we call 1, a 

straight-edge, and a compass (device for drawing circles). A real number 

(better a length) is constructible if it can be constructed by forming 

successive intersections of  

o lines drawn through two points already constructed, and 

o circles with centre a point already constructed and radius a 

constructed length. 

 

This led them to three famous questions that they were unable to answer: 

is it possible to duplicate the cube, trisect an angle, or square the circle 

by straight-edge and compass constructions? We’ll see that the answer to 
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all three is negative. 

Let F be a subfield of R. For a positive a ∈ F , √  denotes the positive 

square root of a in R. The F -plane is      →     . We make the 

following definitions: 

An F -line is a line in RR through two points in the F -plane. These are 

the lines given by equations 

 

 

An F -circle is a circle in RR with centre an F -point and radius an 

element of F . These are the circles given by equations 

  

 

 

 

2.4.1 LEMMA:  Let L ≠ L' be F -lines, and let C ≠ C'  be F -circles. 

(a) L  L' =   or consists of a single F -point. 

(b) L  C =   or consists of one or two points in the F [√ ]-plane, some e 

∈ F , e > 0. 

(c) C    C' =   or consists of one or two points in the F [√ ]- plane, 

some  e ∈ F , e > 0. 

PROOF. The points in the intersection are found by solving the 

simultaneous equations, and hence by solving (at worst) a quadratic 

equation with coefficients in F.  

 

2.4.2 LEMMA : (a) If c and d are constructible, then so also are c + d, – 

c , cd, and c/d (d ≠ 0). 

(b) If c > 0 is constructible, then so also is √ . 

 

SKETCH OF PROOF. First show that it is possible to construct a line 

perpendicular to a given line through a given point, and then a line 

parallel to a given line through a given point. 

Hence it is possible to construct a triangle similar to a given one on a 

side with given length. 

By an astute choice of the triangles, one constructs cd and c
-1

. For (b), 

draw a circle of radius c+1/ 2 and centre . (c+ ½, 0), and draw a vertical 
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line through the point A = (1,0) to meet the circle at P . The length AP is 

√ .  

 

2.4.3 THEOREM (a) The set of constructible numbers is a field.  

(b) A number α  is constructible if and only if it is contained in a subfield 

of R of the form  

 

PROOF. (a) This restates (a) of Lemma 2.4.2. 

(b) It follows from Lemma 2.4.1 that every constructible number is 

contained in such a field   [√  ,…, √  ]. Conversely, if all the elements 

of   [√  ,…, √    ].  are constructible, then √   is constructible (by 

1.35b), and so all the elements of [√  ,…, √  ] are constructible (by 

(a)). Applying this for i = 0;1,…, we find that all the elements of 

  [√  ,…, √  ] are constructible.  

 

2.4.4 COROLLARY:  If α is constructible, then α is algebraic over  , 

and [      ]is a powerof 2. 

 

PROOF. According to Proposition ŒQŒ˛•WQ• divides 

 

 

 

2.4.5 COROLLARY: In general, it is impossible to trisect an angle by 

straight-edge and compass constructions. 

 

PROOF. Knowing an angle is equivalent to knowing the cosine of the 

angle. Therefore, to trisect 3α, we have to construct a solution to 

 

 

For example, take 3α = 60 degrees. As cos60⁰ = 1/ 2, to construct ˛α we 

have to solve 8x
3
 – 6x –1 = 0, which is irreducible and so [      ] = 3/  
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2.4.6 COROLLARY: It is impossible to square the circle by straight-

edge and compass constructions. 

 

PROOF:  A square with the same area as a circle of radius r has side 

√  . Since is transcendental, so also is √ .  

 

We next consider another problem that goes back to the ancient Greeks: 

list the integers n such that the regular n-sided polygon can be 

constructed using only straight-edge and compass. Here we consider the 

question for a prime p. 

Note that X
p
 –1 is not irreducible; in fact 

 

 

 

2.4.7 LEMMA: If p is prime, then X
p –1 

+ …+ 1 is irreducible; hence 

Q[      ]  has degree p –1 over   .  

 

PROOF.  

 

Let 

 

with ai = (    
 ). Now p|ai for i = 1,…,p – 2, and so f (X +1) is irreducible 

by Eisenstein’s criterion. This implies that f (X) is irreducible. In order to 

construct a regular p-gon, p an odd prime, we need to construct  

 

 

 

 

Note that 
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shows that it is at most 2, and it is not 1 because       ]  ∉  . Hence 

 

 

 

 

We deduce that, if the regular p-gon is constructible, then (p – 1)/ 2 is a 

power of 2; later we’ll prove the converse statement. Thus, the regular p-

gon is constructible if and only if p = 2
r
 + 1 for some positive integer r. 

 

A number 2
r
 + 1 can be prime only if r is a power of 2: if t is odd, then 

 

And so 

 

 

 

We conclude that the primes p for which the regular p-gon is 

constructible are exactly those of the form    
 + 1 for some r. Such p are 

called Fermat primes (because Fermat conjectured that all numbers of 

the form    
 + 1 are prime). For r = 0,1,2,3,4, we have    

 + 1 =  

3,5,17,257,65537, which are indeed prime, but Euler showed that 2
32

 + 1 

=(641)(6700417), and we don’t know whether there are any more Fermat 

primes. Thus, we do not know the list of primes p for which the regular 

p-gon is constructible. 

 

Gauss showed that 
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when he was 18 years old. This success encouraged him to become a 

mathematician. 

 

2.5 ALGEBRAICALLY CLOSED FIELDS 
 

We say that a polynomial splits in F [X] (or, more loosely, in F ) if it is a 

product of polynomials of degree 1 in F [X]. 

 

2.5.1 PROPOSITION For a field Ω, the following statements are 

equivalent: 

 

(a) Every nonconstant polynomial in Ω [X] splits in Ω [X] . 

(b) Every nonconstant polynomial in Ω [X] has at least one root in Ω. 

(c) The irreducible polynomials in  Ω [X] are those of degree 1. 

(d) Every field of finite degree over Ω equals Ω. 

 

PROOF. The implications (a)⇒(b)⇒(c) are obvious. 

(c)⇒(a). This follows from the fact that Ω [X] is a unique factorization 

domain. 

(c)⇒(d). Let E be a finite extension of  Ω, and let α ∈ E. The minimum 

polynomial of α being irreducible, has degree 1, and so α ∈ Ω . 

(d)⇒(c). Let f be an irreducible polynomial in Ω[X]. Then  Ω[X]/ (f ) is 

an extension field of  Ω of degree deg(f ) and so deg(f ) = 1.  

 

DEFINITION:  (a) A field Ω is algebraically closed if it satisfies the 

equivalent statements of Proposition. 

(b) A field Ω is an algebraic closure of a subfield F if it is algebraically 

closed and algebraic over F . 

 

For example, the fundamental theorem of algebra says that   is 

algebraically closed. It is an algebraic closure of  . 

 

2.5.2 PROPOSITION : If Ω is algebraic over F and every polynomial f 
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∈ F [X]•splits in Ω[X], then Ω is algebraically closed (hence an 

algebraic closure of F ). 

 

PROOF. Let f be a non constant polynomial in  Ω[X]. We have to show 

that f has a root in Ω. We know that f has a root α in some finite 

extension Ω' of  Ω. Set 

 

 

 

and consider the fields 

 

 

 

Each extension generated by a finite set of algebraic elements, and hence 

is finite. Therefore α lies in a finite extension of F and so is algebraic 

over F — it is a root of a polynomial g with coefficients in F. By 

assumption, g splits in Ω[X] and so the roots of g in Ω' all lie in Ω. In 

particular, α ∈ Ω. 

 

2.5.3 PROPOSITION: Let Ω    F; then  

 

   {α ∈ Ω| α algebraic over F} is a field. 

 

PROOF. If α and β are algebraic over F , then F [α, β] is a field of finite 

degree over F. Thus, every element of F [α, β] is algebraic over F . In 

particular,    , α/β  and αβ are algebraic over F . 

 

The field constructed in the proposition is called the algebraic closure of 

F in Ω. 

 

2.5.4 COROLLARY : Let Ω be an algebraically closed field. For any 

subfield F of Ω, the algebraic closure of F in Ω is an algebraic closure of 

F: 

 

PROOF. From its definition, we see that it is algebraic over F and every 
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polynomial in F [X] splits in it. Now Proposition 2.5.3 shows that it is an 

algebraic closure of F .  

Thus, when we admit the fundamental theorem of algebra , every 

subfield of C has an algebraic closure (in fact, a canonical algebraic 

closure).  

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

2.6 LET US SUM UP 
 

We understood the concept of  Stem fields, Algebraic and transcendental 

elements. We discussed Constructions with straight-edge and compass. 

We have discussed the concept of  Algebraically closed fields 

 

2.7 KEYWORDS 
 

Irreducible polynomial:  or prime polynomial is, roughly speaking, a 

non-constant polynomial that cannot be factored into the product of two 

non-constant polynomials. 

 

Degree of Field: The degree may be finite or infinite, the field being 

called a finite extension or infinite extension accordingly.  

 

Check your Progress-2 

3. Explain  concept of constructible 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4.  Discuss Algebraically closed fields 
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Unique Factorization Domain. A unique factorization domain, called 

UFD for short, is any integral domain in which every nonzero 

noninvertible element has a unique factorization, i.e., an 

essentially unique decomposition as the product of prime elements or 

irreducible elements. 

2.8 QUESTIONS FOR REVIEW 
 

1. Determine [ (√  √ ): ]  • 

2. Let f [X] be an irreducible polynomial over F of degree n, and let E be 

a field extension of F with [E:F] = m. If gcd(m,n) = 1, show that f is 

irreducible over E. 

3. Show that there does not exist a polynomial f (X) ∈  [X] of degree > 1 

that is irreducible modulo p for all primes p. 

2.9 SUGGESTED READINGS AND 
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2.10 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1.  Provide the characteristics  – 2.3 

2. Provide proof  – 2.3.1 

3. Provide explanation – 2.4 

4. Provide explanation – 2.5  
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UNIT-3 SPLITTING FIELDS 
 

STRUCTURE 

3.0 Objectives 

3.1 Introduction 

3.2 Homomorphisms from simple extensions. 

3.3 Splitting fields 

3.4 Multiple roots 

3.5 Groups of auto orphisms of fields 

3.6 Let us sum up 

3.7Keywords 

3.8 Questions for Review 

3.9 Suggested Reading and References 

3.10 Answers to Check your Progress 

3.0 OBJECTIVES 
 

Understand the concept of Homomorphisms from simple extensions. 

Enumerate the concept of Splitting fields and Multiple roots 

Understand the Groups of automorphisms of fields 

3.1 INTRODUCTION 
 

In abstract algebra, a splitting field of a polynomial with coefficients in 

a field is the smallest field extension of that field over which the 

polynomial splits or decomposes into linear factors. 
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3.2 HOMOMORPHISMS FROM SIMPLE 

EXTENSIONS. 
 

Let E and E' be fields containing F . Recall that an F -homomorphism is a 

homomorphism 

 

 

such that  (a) = a for all a ∈ F . Thus an F -homomorphism   maps a 

polynomial 

 

 

 

 

 

 

An F -isomorphism is a bijective F -homomorphism. 

 

An F -homomorphism E → E' of fields is, in particular, an injective F -

linear map of F -vector spaces, and so it will be an F -isomorphism if E 

and E' have the same finite degree over F . 

 

3.2.1 PROPOSITION : Let F(α)be a simple field extension of a field F , 

and let  be a second field containing F. 

(a) Let α be transcendental over F . For every F –homomorphism 

      →  ,   (α) transcendental over F , and the map   →  ( ) 

defines a one-to-one correspondence 

 

(b) Let α be algebraic over F with minimum polynomial f (X). For every 

F -homomorphism 

      →  ,   (α) is a root of f (X) in Ω, and the map   →  ( ) 

defines a one-toone correspondence 
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In particular, the number of such maps is the number of distinct roots of f 

in Ω. 

 

PROOF. (a) To say that α is transcendental over F means that F [α] is 

isomorphic to the polynomial ring in the symbol α. Therefore, for every γ 

∈ Ω there is a unique F - homomorphism       →   such that  ( )  

 . This   extends to the field of fractions F(α) of F[α]  if and only if the 

nonzero elements of F[α] are sent to nonzero elements of Ω, which is the 

case if and only if γ is transcendental over F .  

 

Thus we see that here are one-to-one correspondences between 

 (a) the F -homomorphisms  ( ) →   (b) the F -homomorphisms 

      →   such that  ( ) is transcendental, (c) the transcendental 

elements of Ω. 

 

(b) Let f (X) = ∑   
 , and consider an F -homomorphism       →   

On applying   to the equality ∑   
   , we obtain the equality 

∑   ( )  =  0, which shows that  ( ) is a root of f (X) in Ω. 

Conversely, if γ ∈ Ω is a root of f(X), then the map F [X]→Ω g(X)→ g(γ), 

factors through F [X]/ (f (X)). When composed with the inverse 

of the isomorphism X + f (X)   α: F [X] / (f (X))→F [α] this becomes a 

homomorphism F [α]→Ω sending α to γ.  

 

We’ll need a slight generalization of this result. 

 

3.2.2 PROPOSITION : Let F [α]  be a simple field extension of a field F 

, and let     →   be a homomorphism from F into a second field Ω. 

(a) If α is transcendental over F , then the map    ( ) →   defines a 

one-to-one correspondence 

 

 

(b) If α is algebraic over F , with minimum polynomial f (X), then the 

 →  ( ) map defines a one-to-one correspondence 
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In particular, the number of such maps is the number of distinct roots of 

   f in Ω. 

 

By    f we mean the polynomial obtained by applying    to the 

coefficients of f . By an extension of     to F(α) we mean a 

homomorphism     →   whose restriction to F is     . 

 

The proof of the proposition is essentially the same as that of the 

preceding proposition. 

 

3.3 SPLITTING FIELDS 
 

Let f be a polynomial with coefficients in F. A field E containing F is 

said to split f if f splits in E[X]: 

 

 

 

If E splits f and is generated by the roots of f 

 

 

 

then it is called a splitting or root field for f . 

 

Note that ∏  ( )   and ∏  ( ) have the same splitting fields.  

 

Note also that f splits in E if it has deg(f) - 1 roots in E because the sum 

of the roots of f lies in F  
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EXAMPLE : 

(a) Let f (X) = aX
2
 + bX + c ∈  [X], and let   √      . The 

subfield   [α] of   is a splitting field for f.  

(b) Let f (X) = X
3
+aX

2
 + bX + c ∈  [X], be irreducible, and let α1, α2, α3 

be its roots in  . Then   [α1, α2, α3]  =   [α1, α2] is a splitting field for f 

(X). Note that    [α1]:    = 3  and that    [α1, α2]:   [α1] ]•= 1 or 2, 

and so    [α1, α2]:  ] = 3 or 6.  

 

3.3.1 PROPOSITION : Every polynomial f ∈ F [X] has a splitting field 

Ef , and 

 

 

 

PROOF. Let F1 = F [α1]  be a stem field for some monic irreducible 

factor of f in F [X]•. 

Then f (α1)  = 0, and we let F2 = F1 [α2]  be a stem field for some monic 

irreducible factor of f (X) /(X – α1) in F1[X]. Continuing in this fashion, 

we arrive at a splitting field Ef . 

Let n = degf . Then [F1:F]  =  deg g1   n, [F2:F1]    n – 1,…, and so [Ef 

:F ]•   n!.  

 

EXAMPLE :(a) Let f (X) = (X
p
 – 1) /(X – 1) ∈   [X], p prime. If δ is 

one root of f , then the remaining roots are δ 
2
; δ 

3
,…, δ 

p – 1
, and so the 

splitting field of f is   [δ]•.  

 

(b) Let F have characteristic p ≠ 0, and let f = X
p
 – X– a ∈ F [X]. If α is 

one root of f in some extension of F, then the remaining roots are  α+1 

,… α+p–1, and so the splitting field of f is F [α].  

 

(c) If α is one root of X
n
 – a, then the remaining roots are all of the form 

δα , where δ
n
 = 1. Therefore, if F contains all the n

th
 roots of 1 (by which 

we mean that X
n
 –1 splits in F [X]), then F[α] is a splitting field for X

n 
– 

a. Note that if p is the characteristic of F , then X
p
– 1 = (X– 1)

p
, and so F 

automatically contains all the p
th

 roots of 1.  
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3.3.2 PROPOSITION: Let f ∈ F[X] be monic. Let E be a field 

containing F and generated over F by roots of  f, and let Ω be a field 

containing F in which f splits. 

 

(a) There exists an F -homomorphism φ: E → Ω the number of such 

homomorphisms is at most [E: F] , and equals [E: F] if  has distinct roots 

in Ω.  

(b) If E and Ω are both splitting fields for f , then every F -

homomorphism E → Ω is an isomorphism. In particular, any two splitting 

fields for f are F -isomorphic.  

 

To say that f splits in Ω means that f (X) =  ∏ (     )
    
    with α1, α2,. 

.. ∈ Ω , to say that f has distinct roots in Ω means that αi ≠ αj  if i ≠ j .  

 

PROOF. We begin with an observation: let F , f , and Ω  be as in the 

statement of the proposition, let L be a subfield of Ω containing F , and 

let g be a monic factor of f in L[X],  then g divides f in Ω[X], and so (by 

unique factorization in Ω[X]), g is product of certain number of the 

factors X - αi of f in Ω[X], in particular, we see that g splits in Ω, and that 

its roots are distinct if the roots of f are distinct.  

 

(a) By hypothesis, E = F [α1, …,αm]with each αi a root of f (X). The 

minimum polynomial of α1 is an irreducible polynomial f1 dividing f . 

From the initial observation with L = F , we see that f1 splits in Ω, and 

that its roots are distinct if the roots of f are distinct. According to 

Proposition 3.2.1, there exists an F -homomorphism  φ1: F[α1] → Ω , and 

the number of such homomorphisms is at most [F[α1] :F], with equality 

holding when f has distinct roots in Ω.  

 

 The minimum polynomial of α2 over F[α1] is an irreducible factor f2 of f 

in F[α1] [X]. On applying the initial observation with L =  φ1 F[α1] and g 

= φ1 f2 we see that φ1 f2 splits in Ω, and that its roots are distinct if the 

roots of f are distinct. According to Proposition 3.2.2  

 

 



Notes 

47 

each φ1 extends to a homomorphism φ2: F[α1,α2]→Ω , and the number of 

extensions is at most F[α1,α2]: F[α1]], with equality holding when f has 

distinct roots in Ω. 

On combining these statements we conclude that there exists an F -

homomorphism 

 

 

 

and that the number of such homomorphisms is at most F[α1,α2]: F ],  

with equality holding if f has distinct roots in Ω: 

After repeating the argument m times, we obtain (a). 

 

(b) Every F -homomorphism E → Ω is injective, and so, if there exists 

such a homomorphism, then [E:F]   [Ω:F]. If E and Ω are both splitting 

fields for f , then (a) shows that there exist homomorphisms E ⇄  Ω, and 

so [E: F] = [Ω:F]. It follows that every F -homomorphism E → Ω is an F -

isomorphism. 

 

3.3.3COROLLARY : Let E and L be extension fields of F , with E finite 

over F . 

(a) The number of F -homomorphisms E → L is at most [E: F] •. 

(b) There exists a finite extension Ω/L and an F -homomorphism E→Ω. 

 

PROOF. Write E = F [α1,…,αm]•, and let f ∈ F [X] be the product of the 

minimum polynomials of the αi; thus E is generated over F by roots of f . 

Let Ω be a splitting field for f regarded as an element of L[X]. The 

proposition shows that there exists an F -homomorphism E →Ω and the 

number of such homomorphisms is    E :F]. This proves (b), and since 

an F -homomorphism E → L can be regarded as an F -homomorphism 

E →Ω, it also proves (a).  

 

REMARK : (a) Let E1,E2,…,  Em be finite extensions of F , and let L be 

an extension of F . From the corollary we see that there exists a finite 

extension L1/L such that L1 contains an isomorphic image of E1; then that 

there exists a finite extension L2/L1 such that L2 contains an isomorphic 
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image of E2. On continuing in this fashion, we find that there exists 

a finite extension Ω/L such that Ω contains an isomorphic copy of every 

Ei. 

 

(b) Let f ∈ F [X]. If E and E' are both splitting fields of f, then we know 

there exists an F -isomorphism E → E', but there will in general be no 

preferred such isomorphism. 

 

Error and confusion can result if the fields are simply identified. Also, it 

makes no sense to speak of ―the field F [α] generated by a root of f ‖ 

unless f is irreducible (the fields generated by the roots of two different 

factors are unrelated). Even when f is irreducible, it makes no sense to 

speak of ―the field F [α, β] generated by two roots α, β of f ‖ (the 

extensions of F [α] generated by the roots of two different factors of f in 

F [α][β] may be very different). 

Check your Progress-1 

1. Explain  Homomorphisms from simple extensions. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2.   Discuss Splitting Field 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

3.4 MULTIPLE ROOTS 
 

Even when polynomials in F [X]•have no common factor in F [X], one 

might expect that they could acquire a common factor in Ω[X] for someΩ 

  F . In fact, this doesn’t happen — greatest common divisors don’t 

change when the field is extended. 

 

3.4.1 PROPOSITION : Let f and g be polynomials in F [X]•, and let ˝ 

be an extension of F. If r(X) is the gcd of f and g computed in F [X], then 
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it is also the gcd of f and g in Ω[X]. In particular, distinct monic 

irreducible polynomials in F [X] do not acquire a common root 

in any extension field of F: 

 

PROOF. Let rF(X) and rΩ (X) be the greatest common divisors of f and g 

in F [X]and Ω[X] respectively. Certainly rF (X) | rΩ (X) in Ω[X], but 

Euclid’s algorithm shows  that there are polynomials a and b in F[X]• 

such that 

 

 

and so rΩ(X) divides rF(X) in Ω[X]. 

For the second statement, note that the hypotheses imply that gcd(f, g) = 

1 (in F [X]), and so f and g can’t acquire a common factor in any 

extension field.  

 

 

The proposition allows us to speak of the greatest common divisor of f 

and g without reference to a field. 

Let f ∈ F [X]. Then f splits into linear factors in Ω [X] for some extension 

field Ω of F. We say that αi is a root of f of multiplicity mi in Ω. If mi > 1, 

then αi is said to be a multiple root of f , and otherwise it is a simple root. 

 

The unordered sequence of integers m1,… , mr in (4) is independent of 

the extension field Ω chosen to split f . Certainly, it is unchanged when Ω 

is replaced with its subfield F [α1, … , αm], but F [α1, … , αm], is a 

splitting field for f , and any two splitting fields are F –isomorphic. We 

say that f has a multiple root when at least one of the mi > 1,and we say 

that f has only simple roots when all mi = 1.  

 

We wish to determine when a polynomial has a multiple root. If f has a 

multiple factor in F [X], say f = ∏  ( )  
 with some mi > 1, then 

obviously it will have a multiple root. 
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If f = ∏   with the fi distinct monic irreducible polynomials, then 

Proposition 3.4.1 shows that f has a multiple root if and only if at least 

one of the fi has a multiple root. Thus, it suffices to determine when an 

irreducible polynomial has a multiple root. 

 

EXAMPLE : Let F be of characteristic p≠0, and assume that F contains 

an element a that is not a p
th

-power, for example, a = T in the field  p(T) 

. Then X
p
 – a is irreducible in F [X], but by we have X

p
 – a  =  (X– α)

p
 in 

its splitting field. Thus an irreducible polynomial can have multiple 

roots. 

 

The derivative of a polynomial f (X) = ∑   
  

 is defined to be f '(X) = 

∑     
   

. When f has coefficients in R, this agrees with the definition in 

calculus. The usual rules for differentiating sums and products still hold, 

but note that in characteristic p the derivative of X
p
 is zero.  

 

3.4.2 PROPOSITION: For a non constant irreducible polynomial f in F 

[X], the following statements are equivalent:  

(a) f has a multiple root;  

(b) gcd(f, f ') ≠ 1;  

(c) F has nonzero characteristic p and f is a polynomial in X
p
, 

(d) all the roots of f are multiple. 

 

PROOF. (a) ) (b). Let ˛ be a multiple root of f , and write f = (X – α)
m 

 

g(X), m > 1, in some field splitting f . Then 

 

Hence f and f ' have X – α  as a common factor. 

 

(b) ⇒ (c). As f is irreducible and deg(f ') < deg.f /, 

 

 



Notes 

51 

But, because f is non constant, f 'can be zero only if F has characteristic p 

≠ 0 and f is a polynomial in X
p
. 

 

(c) ⇒ (d). Suppose f (X) = g(X
p
), and let g(X) = ∏ (   )  

  in some 

field splitting f . Then 

 

 

 

where   
 
 = ai. Hence every root of f (X) has multiplicity at least p. 

 

(d) ⇒  (a). Obvious.  

 

3.4.3 PROPOSITION : For a non constant polynomial f in F [X], the 

following statements are equivalent: 

(a) gcd(f , f ') = 1; 

(b) f has only simple roots (in any field splitting f ). 

 

PROOF. Let Ω be an extension of F splitting f . We see that a root α of f 

in Ω is multiple if and only if it is also a root of f '  

If gcd(f , f ') =1, then f and f 0 have no common factor in Ω [X]. In 

f particular, they have no common root, and so f has only simple roots. 

If f has only simple roots, then gcd(f , f ') must be the constant 

polynomial, because otherwise it would have a root in Ω which would 

then be a common root of f and f '.  

 

3.4.4 DEFINITION: A polynomial is separable if it has only simple 

roots (in any field splitting the polynomial).  

 

Thus a non constant irreducible polynomial f is not separable if and only 

if F has characteristic p ≠ 0 and f is a polynomial in X
p
 . A nonconstant 

polynomial f is separable if and only if gcd(f , f ') =1. Let f = ∏   with f 

and the    monic and the    irreducible; then f is separable if and only if 

the    are distinct and separable. If f is separable as a polynomial in F 

[X], then it is separable as a polynomial in Ω[X] for every field Ω 

containing F. 
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3.4.5 DEFINITION: A field F is perfect if every irreducible polynomial 

in F [X] is separable. 

 

3.4.6 PROPOSITION : A field F is perfect if and only if 

(a) F has characteristic zero, or 

(b) F has nonzero characteristic p and every element of F is a p
th

 power. 

 

PROOF. A field of characteristic zero is obviously perfect, and so we 

may suppose F has characteristic p ≠ 0. If F contains an element a that is 

not a p
th

 power, then X
p
 – a is irreducible in F [X] but not separable. 

Conversely, if every element of F is a p
th

  power, then every polynomial 

in Xp with coefficients in F is a p
th

 power in F [X] and so it is not 

irreducible.  

 

 

 

 

EXAMPLE : (a) A finite field F is perfect, because the Frobenius 

endomorphism a   a
p
 : F → F is injective and therefore surjective (by 

counting). 

(b) A field that can be written as a union of perfect fields is perfect. 

Therefore, every field algebraic over    is perfect. 

(c) Every algebraically closed field is perfect. 

(d) If F0 has characteristic p ≠ 0, then F = F0(X) is not perfect, because X 

is not a p
th

 power. 

 

3.5 GROUPS OF AUTOMORPHISMS OF 

FIELDS 
 

Consider fields E   F. An F -isomorphism E → E is called an F -

automorphism of E. The F -automorphisms of E form a group, which we 

denote Aut (E/F ). 
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EXAMPLE : (a) There are two obvious automorphisms of  , namely, 

the identity map and complex conjugation.  

 

(b) Let E = (X). A   -automorphism of E sends X to another generator 

of E over  . Below are exactly the elements 

 

 

Therefore Aut(E/  ) consists of the maps 

 

 

 

And so  

 

 

 

the group of invertible 2 2 matrices with complex coefficients modulo 

its centre. Analysts will note that this is the same as the automorphism 

group of the Riemann sphere. Here is the explanation. The field E of 

meromorphic functions on the Riemann sphere    
  consists of the 

rational functions in z, i.e., E =  (z)    (X), and the natural map 

Aut(   
  ) → Aut(E/  ) is an isomorphism. 

 

(c) The group Aut( .(X1, X2) /  ) is quite complicated — there is a map 

 

 

 

but this is very far from being surjective. When there are even more 

variables X, the group is not known. The group Aut( .(X1, …, Xn) /  ) is 

the group of birational automorphisms of projective n-space   
 , and is 

called the Cremona group. Its study is part of algebraic geometry. 

 

In this section, we’ll be concerned with the groups Aut (E/F ) when E is a 

finite extension of F 
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3.5.1 PROPOSITION : Let E be a splitting field of a separable 

polynomial f in F [X]; then Aut.E=F / has order [E: F]. 

 

PROOF. As f is separable, it has deg f distinct roots in E. Therefore 

Proposition 2.7 shows that the number of F -homomorphisms E →E is 

[E: F] . Because E is finite over F, all such homomorphisms are 

isomorphisms. 

 

EXAMPLE: Consider a simple extension E = F [α] and let f be a 

polynomial in F [X] having ˛ as a root. If α is the only root of f in E, then 

Aut(E/F ) = 1.  

 

For example, let √ 
 

 denote the real cube root of 2; then Aut( [√ 
 

]  ) 

= 1. 

As another example, let F be a field of characteristic p ≠ 0, and let a be 

an element of F that is not a p
th

 power. Let E be a splitting field of f = X
p
 

– a. Then f has only one root in E and so Aut(E/F ) = 1. 

These  examples show that, in the statement of the proposition, is 

necessary that E be a splitting field of a separable polynomial. 

 

When G is a group of auto orphisms of a field E, we set 

 

 

 

 

It is a subfield of E, called the subfield of G-invariants of E or the fixed 

field of G. 

In this section, we’ll show that, when E is the splitting field of a 

separable polynomial in F [X] and G = Aut(E/F), then the maps 

 

 

 

give a one-to-one correspondence between the set of intermediate fields 

M , F   M   E, and the set of subgroups H of G. 
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3.5.2 THEOREM :  Let G be a finite group of auto orphisms of a field 

E, and let 

 

 

 

PROOF. Let G = {       } with    the identity map. It suffices to 

show that every set {       } of elements of E with n > m is linearly 

dependent over F . For such a set, bconsider the system of linear 

equations 

 

 

 

 

 

 

with coefficients in E. There are m equations and n > m unknowns, and 

hence there are nontrivial solutions in E. We choose one (c1,…, cn) 

having the fewest possible non- zero elements. After renumbering the αi, 

we may suppose that c1 ≠ 0, and then, after multiplying by a scalar, that 

c1 ∈ F . With these normalizations, we’ll show that all ci ∈ F . Then the 

first equation 

 

 

(recall that   = id) will be a linear relation on the αi. 

If not all ci are in F , then    (ci) ≠ ci for some k ≠ 1 and i ≠ 1. On 

applying    to the equations 

 

 

 

 

 

and using that {               } is a permutation of {         }, we 

find that 
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is also a solution to the system of equations (6). On subtracting it from 

the first, we obtain a solution (0;:::;ci –    (ci),…), which is nonzero 

(look at the i
th

 entry), but has more zeros than the first solution (look at 

the first entry) — contradiction.  

 

3.5.3 COROLLARY Let G be a finite group of automorphisms of a field 

E; then G = Aut(E/E
G
). 

 

PROOF. As G   Aut Aut(E/E
G
).we have inequalities 

 

 

 

All the inequalities must be equalities, and so G = Aut(E/E
G
). 

 

3.6 LET US SUM UP 
 

We have discussed  different concepts like Homomorphisms from simple 

extensions, Splitting fields and Multiple roots. We have explored and 

understood Groups of automorphisms of fields. 

 

3.7 KEYWORDS 
 

Distinct roots - all the roots(solutions) of the equations are not equal to 

one another. 

Bijective function -  one-to-one correspondence, or invertible function, is 

a function between the elements of two sets, where each element of one 

set is paired with exactly one element of the other set, and each element 

of the other set is paired with exactly one element of the first set. 

 Transcendental number - is a complex number that is not an algebraic 

number—that is, not a root (i.e., solution) of a nonzero polynomial 

equation with integer coefficients. 



Notes 

57 

3.8 QUESTIONS FOR REVIEW 
 

1. Let F be a field of characteristic ¤ 2. 

(a) Let E be quadratic extension of F (i.e., ŒEWF • D 2); show that 

 

 

is a subgroup of F  containing F 2. 

(b) Let E and E0 be quadratic extensions of F ; show that there is an F -

isomorphism 

'WE ! E0 if and only if S.E/ D S.E0/. 

 

2-2 (a) Let F be a field of characteristic p. Show that if Xp X a is 

reducible in F ŒX•, 

then it splits into distinct factors in F ŒX•. 

(b) For every prime p, show that Xp X 1 is irreducible in QŒX•. 
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3.11 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1.  Provide Explanation  – 3.2 

2. Refer Explanation  – 3.3 

3. Provide  definition– 3.4.1 

4. Provide definition – 3.4.4 and 3.4.5 
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UNIT-4 COMPUTING GALOSIS 

GROUP I 
 

STRUCTURE  

4.0 Objectives 

4.1 Introduction 

4.2 Separable, normal, and Galois extensions 

4.3 The fundamental theorem of Galois theory 

4.4 Constructible numbers revisited 

4.5 The Galois group of a polynomial 

4.6 Solvability of equations 

4.7 Let us sum up 

4.8 Keywords 

4.9 Questions for Review 

4.10 Suggested Reading and References 

4.11 Answers to Check your Progress 

4.0 OBJECTIVES 
 

Understand the Separable, normal, and Galois extensions 

Comprehend the fundamental theorem of Galois theory 

Understand the Galois group of a polynomial 

Comprehend Solvability of equations 

4.1 INTRODUCTION 
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In this chapter, we prove the fundamental theorem of Galois theory, 

which classifies the subfields of the splitting field of a separable 

polynomial f in terms of the Galois group of f. 

4.2 SEPARABLE, NORMAL, AND GALOIS 

EXTENSIONS 
 

4.2.1 DEFINITION: An algebraic extension E = F is separable if the 

minimum polynomial of every element of E is separable; otherwise, it is 

inseparable. 

 

Thus, an algebraic extension E/F is separable if every irreducible 

polynomial in F [X] having a root in E is separable, and it is inseparable 

if 

  F is nonperfect, and in particular has characteristic p ≠ 0, and 

  there is an element α of E whose minimum polynomial is of the 

form g(X
p
)/, g ∈ F [X] . 

 

For example, E =   (T) is an inseparable extension of   (T
p
) because T 

has minimum polynomial X
p
 – T 

p
. 

 

4.2.2 DEFINITION An algebraic extension E/F is normal if the 

minimum polynomial of every element of E splits in E[X]. In other 

words, an algebraic extension E/F is normal if and only if every 

irreducible polynomial f ∈ F[X] having a root in E splits in E[X]. 

Let f be an irreducible polynomial of degree m in F [X], and let E be an 

algebraic extension of F. If f has a root in E, then 

 

 

It follows that E/F is separable and normal if and only if the minimum 

polynomial of every element α of E has [F:[α]:F] distinct roots in E. 

 

EXAMPLE (a) The polynomial X
3
 – 2 has one real root √ 

 
 and two non 
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real roots in C. Therefore the extension  [√ 
 

]   (which is separable) is 

not normal. 

 

(b) The extension   (T) /   (T
p
) (which is normal) is not separable 

because the minimum polynomial of T is not separable. 

 

4.2.3 DEFINITION: An extension E/F of fields is Galois if it is of finite 

degree and F is the fixed field of the group of F -automorphisms of E 

 

4.2.4 THEOREM : For an extension E/F , the following statements are 

equivalent: 

 

(a) E is the splitting field of a separable polynomial f ∈ F [X]•; 

(b) E is Galois over F ; 

(c) F = E
G
 for some finite group G of automorphisms of E; 

(d) E is normal, separable, and finite over F . 

 

PROOF. (a) ) (b). Let G D Aut.E=F /, and let F' = E
G
   F. We have to 

show that F' = F. Note that E is also the splitting field of f regarded as a 

polynomial with coefficients in F', and that f is still separable when it is 

regarded in this way. Hence 

 

 

 

According to Corollary 3.5.3, Aut(E/ F') = G. As G = Aut (E/F), we 

deduce that [E: F'] = [E: F] and so F = F'. 

 

(b) ⇒ (c). By definition, F = E 
Aut (E/F).

 As E is finite over F, with 

reference to earlier Corollary shows Aut (E/F) to be finite. 

(c) ⇒(d). By Theorem 3.5.2, we know that [E:F]   (G : 1); in particular, 

it is finite. Let α ∈ E, and let f be the minimum polynomial of α; we have 

to show that f splits into distinct factors in E[X]. Let {α1=α, α2…, αm} be 

the orbit of α under the action of G on E, and let 
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The coefficients aj are symmetric polynomials in the ˛i, and each σ ∈G 

permutes the αi, and so σaj = aj for all j . Thus g(X)∈F [X]. As it is monic 

and g(α) = 0, it is divisible by the minimum polynomial f . Let αi = σα on 

applying σ to the equation f (α) = 0 we find that f (αi) = 0. Therefore 

every αi is a root of f , and we conclude that g divides f . Hence f = g, and 

so f (X) splits into distinct factors in E. 

 

(d) ⇒(a). Because E has finite degree over F, it is generated over F by a 

finite number of elements, say, E = F [α1,…, αm]  αi ∈ E, αi algebraic 

over F . Let fi be the minimum polynomial of αi over F, and let f be the 

product of the distinct fi. Because E is normal over F, each fi splits in E, 

and so E is the splitting field of f: Because E is separable over 

F , each fi is separable, and so f is separable.  

Any one of the four conditions in the theorem can be used as the 

definition of a Galois extension. When E/F is Galois, the group Aut(E/F ) 

is called the Galois group of E over F, and it is denoted by Gal(E/F). 

 

4.2.5 REMARK :(a) Let E be Galois over F with Galois group G, and 

let α ∈ E. The elements α1, α2, … , αm of the orbit of α under G are called 

the conjugates of α. In the course of proving the theorem we showed that 

the minimum polynomial of α is ∏(    )  

 

(b) Let G be a finite group of auto orphisms of a field E, and let F D EG. 

Then E/F satisfies the equivalent conditions of Theorem 4.2.4. Hence E 

is Galois over F.  

 

Moreover, Gal (E/F) = G  and [E:F] = |Gal (E/F)|•  

 

4.2.6 COROLLARY :  Every finite separable extension E of F is 

contained in a Galois extension. 

 

PROOF. Let E= F [α1,…, αm]  and let fi be the minimum polynomial of 

αi over F . The product of the distinct fi is a separable polynomial iin F 

[X]• whose splitting field is a Galois extension of F containing E. 
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4.2.7 COROLLARY : Let E   M   F ; if E is Galois over F , then it is 

Galois over M: 

 

PROOF. We know E is the splitting field of some separable f ∈ F [X], it 

is also the splitting field of f regarded as an element of M [X].  

 

4.2.8 REMARK : When we relax the separability conditions, we can 

still say something. An element α of an algebraic extension of F is said to 

be separable over F if its minimum polynomial over F is separable.  

 

The proof of Corollary 4.2.6 shows that a finite extension generated by 

separable elements is separable. Therefore, the elements of an algebraic 

extension E of F that are separable over F form a subfield Esep of E that is 

separable over F . When E is finite over F, we let [E:F]sep = [Esep: F] • 

and call it the separable degree of E over F . If Ω is an algebraically 

closed field containing F , then every F –homomorphism Esep →Ω 

extends uniquely to E, and so the number of F -homomorphisms E →Ω is 

[E: F]sep. When E   M   F (finite extensions), 

 

 

 

 

In particular, E is separable over F ⇔ E is separable over M and M is 

separable over F. 

 

4.2.9 DEFINITION :  A finite extension E   F is a cyclic, abelian, ..., 

solvable extension if it is Galois and its Galois group is cyclic, abelian, 

..., solvable Galois group. 

 

4.3 THE FUNDAMENTAL THEOREM OF 

GALOIS THEORY 
 

4.3.1 THEOREM : (FUNDAMENTAL THEOREM OF GALOIS 

THEORY)  
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Let E be a Galois extension of F , and let G = Gal(E/F) The maps H   

E
H
 and M   Gal(E/M) are inverse bijections between the set of 

subgroups of G and the set of intermediate fields between E 

and F : 

 

 

Moreover, 

 

PROOF. For the first statement, we have to show that H   E
H
 and M   

Gal(E/M) are inverse maps. Let H be a subgroup of G. Then, Corollary 

3.5.3 shows that Gal(E/E
H
) = H. Let M be an intermediate field. Then E 

is Galois over M by (4.2.7), which means that E 
Gal(E/M)

 = M . 

 

(a) We have the obvious implications, 

 

As Gal(E/E
Hi

) = Hi, this proves (a). 

 

(b) Let H be a subgroup of G. According to 4.2.5 (b), 

 

 

 

This proves (b) in the case H2 = 1, and the general case follows, using 

that 

 

 

 

 

(c) For τ ∈ G and α ∈ E, 
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Therefore, τ fixes M if and only if στσ 
– 1  

fixes σM , and so σ Gal(E/M) σ 

– 1  
= Gal(E/σM). This shows that σGal (E/M) σ 

– 1  
corresponds to σM. 

 

 (d) Let H be a normal subgroup of G. Because σH σ 
– 1  

= H for all σ ∈ 

G, we must have σE
H
 = E

H
 for all σ ∈ G, i.e., the action of G on E 

stabilizes E
H
 . We therefore have a homomorphism  

 

 

 

whose kernel is H . As (E
H
 ) 

G/H
 = F , we see that E

H
 is Galois over F (by 

Theorem 4.2.4) and that G/H   Gal(E
H
/F ). 

 

Conversely, suppose that M is normal over F , and let α1,…αm generate 

M over F . For σ ∈ G, σαi is a root of the minimum polynomial of αi over 

F, and so lies in M . Hence σM = M , and this implies that σH σ 
– 1  

 = H 

(by (c)).  

 

4.3.2 REMARK : The theorem shows that there is an order reversing 

bijection between the intermediate fields of E/F and the subgroups of G. 

Using this we can read off more results. (a) Let M1, M2,…,Mr be 

intermediate fields, and let Hi be the subgroup corresponding to Mi (i.e., 

Hi = Gal(E/Mi). Then (by definition) M1M2…Mr is the smallest field 

containing all Mi; hence it must correspond to the largest subgroup 

contained in all Hi, which is  Hi. Therefore  

 

 

(b) Let H be a subgroup of G and let M D EH . The largest normal 

subgroup contained in H is N =       
 ∈  (see GT 4.10), and so E

N
 is 

the smallest normal extension of F containing M . Note that, by (a), E
N
 is 

the composite of the fields σM . It is called the normal, or Galois, closure 

of M in E.  
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4.3.3 PROPOSITION :  Let E and L be field extensions of F contained 

in some common field. If E/F is Galois, then EL/L and E/E  L are 

Galois, and the map 

 

 

 

is an isomorphism.  

 

PROOF. Because E is Galois over F , it is the splitting field of a 

separable polynomial f ∈ F [X]. Then EL is the splitting field of f over L, 

and E is the splitting field of f over E \ L. Hence EL=L and E=E \ L are 

Galois. Every automorphism σ of EL fixing the elements of L maps roots 

of f to roots of f , and so σE = E. There is therefore a homomorphism 

 

 

If σ ∈ Gal(EL/L) fixes the elements of E, then it fixes the elements of 

EL, and hence is the identity map. Thus, σ   σ | E is injective. If α ∈ E is 

fixed by all σ ∈ Gal(EL/L), then α ∈ E   L. By Corollary this implies 

that the image of σ  σ |E is Gal(E/E   L).  

 

 

 

 

 

 

 

 

 

4.3.4 COROLLARY : Suppose, in the proposition, that L is finite over F 

. Then 

 

 

 

 

PROOF. According to Proposition 
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4.3.5 PROPOSITION :  Let E1 and E2 be field extensions of F contained 

in some common field. If E1 and E2 are Galois over F, then E1E2 and E1 

  E2 are Galois over F, and the map 

 

is an isomorphism of Gal.E1E2=F / onto the subgroup 

 

 

 

PROOF: Let a ∈ E1   E2, and let f be its minimum polynomial over F . 

Then f has deg f distinct roots in E1 and deg f distinct roots in E2. Since f 

can have at most deg f roots in E1E2, it follows that it has deg f 

distinct roots in E1   E2. This shows that E1   E2is normal and 

separable over F, and hence Galois (4.2.5). As E1 and E2 are 

Galois over F, they are splitting fields for separable polynomials 

f1,f2 ∈ F [X]. Now E1E2 is a splitting field for lcm(f1, f2), and 

hence it also is Galois over F . The map σ  (σ|E1 σ|E2) is 

clearly an injective homomorphism, and its image is contained in 

H. We’ll prove that the image is the whole of H by counting 
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From the fundamental theorem, 

 

 

 

 

and so, for each  

 

 

has exactly [E2 : E1  E2] extensions to an element of Gal(E2/F ). 

Therefore 

 

 

 

 

which equals [E1E2:F] • by (3.19): 

 

Example: 

We analyse the extension       , where δ is a primitive 7th root of 1, 

say δ = e
2πi/7

. 

 

Note that      is the splitting field of the polynomial X
7
 – 1, and that δ 

has minimum polynomial 

 

 

 

Therefore,      is Galois of degree 6 over  . For any σ ∈ Gal(       ) 

, σδ = δ
i
, some i, 1   i   6, and the map σ   i defines an isomorphism 

Gal(       )→ (    ) .  Let σ be the element of Gal(       ) such 

that σδ = δ
3
. 

Then σ generates Gal(       ) because the class of 3 in (  

  ) generates it (the powers of 3 mod 7 are 3,2,6,4,5,1). We investigate 

the subfields of      corresponding to the subgroups 〈  〉 and 

〈  〉. 
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Note that σ
3
δ =  δ 

6
 =   ̅(complex conjugate of δ ), and so δ +  ̅ = 2cos 2π/ 

7 is fixed by σ
3
. Now  

 

 

As 〈  〉 is a normal subgroup of 〈  〉,       ̅ is Galois over  , with 

Galois group 〈  〉 〈  〉 , 

 

The conjugates of 

 

 

 

Direct calculation shows that 

 

Hence the minimum polynomial1 of     ̅is 
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The minimum polynomial of is therefore 

 

 

 

 

The subfield of      corresponding to 〈  〉 is generated by β =  δ + 

δ2+δ4.Let β' = σβ. Then (β – β' )
2
 = –7. Hence the field fixed by 〈  〉 is 

 [√  ]  

Check your Progress-1 

1. Define Conjugate and Separable 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2.   What do you understand by - If E1 and E2 are Galois over F, then 

E1E2 and E1 ∩ E2 are Galois over F ? 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4.4 CONSTRUCTIBLE NUMBERS 

REVISITED 
 

Earlier we showed that a real number α is constructible if and only if it is 

contained in a subfield of   of the form  [√  ,…, √  ]• with each ai a 

positive element of  [√  ,…, √    ]. In particular 

 

Now we can prove a partial converse to this last statement. 

 

4.4.1 THEOREM: If α is contained in a subfield of R that is Galois of 

degree 2
r
 over  , then it is constructible. 
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PROOF. Suppose α ∈ E   R where E is Galois of degree 2
r
 over  , and 

let G = Gal(E/   ). 

 

Because finite p-groups are solvable there exists a sequence of groups 

 

 

 

with Gi/Gi –1  of order 2. Correspondingly, there will be a sequence of 

fields, 

 

 

 

with E i –1   of degree 2 over Ei. The next lemma shows that Ei = E i –1   

[√  ]• for some ai ∈ E i –1   , and ai > 0 because otherwise Ei would not 

be real. This proves the theorem.  

 

4.4.2 LEMMA : Let E/F be a quadratic extension of fields of 

characteristic ≠ 2. Then E =F [√ ]• for some d ∈ F . 

 

PROOF. Let α ∈ E, α ∉ F , and let X
2
 + bX +c be the  

minimum polynomial of ˛. 

 

 

 

4.4.5 COROLLARY: If p is a prime of the form 2
k 

+1, then cos 2π/ 

p is constructible. 

 

PROOF. The field  [e
2πi/p

] is Galois over   with Galois group G   

( =p ), which has order p – 1  = 2
k
. The field   [cos2π/p] is contained 

in  [e
2πi/p

] , and therefore is Galois of degree dividing 2
k
 . As   

[cos2π/p] is a subfield of  , we can apply the theorem.  

 

Thus a regular p-gon, p prime, is constructible if and only if p is a Fermat 

prime, i.e., of the form    
+ 1. For example, we have proved that the 
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regular 65537-polygon is constructible, without (happily) having to 

exhibit an explicit formula for cos 2 π/ 65537. 

4.4.6 REMARK : The converse to (7) is false; in particular, there are 

non constructible algebraic numbers of degree 4 over  . The polynomial  

 

 

 

Is irreducible, and we’ll show below that the Galois group of a splitting 

field E for f is S4. Each root of f (X) lies in an extension of degree 2
2
 of 

  . If the four roots of f (X) were constructible, then all the elements of E 

would be constructible , but if H denotes a Sylow 2-subgroup of S4, then 

E
H
 has odd degree over  , and so no element of E

H
 ∖    is constructible. 

 

4.5 THE GALOIS GROUP OF A 

POLYNOMIAL 
 

If a polynomial f ∈ F[X]  is separable, then its splitting field Ff is Galois 

over F , and we call Gal(Ff / F ) the Galois group Gf of f: 

 

Let f (X) =   ∏ (    )
 
    in a splitting field Ff. We know that the 

elements of Gal(Ff / F ) map roots of f to roots of f , i.e., they map the set 

{α1,α2,…,αn} into itself. 

 

Being automorphisms, they act as permutations on {α1,α2,…,αn}. As as 

the αi generate Ff  over F , an element of Gal(Ff / F ) is uniquely 

determined by the permutation it defines. 

 

Thus Gf can be identified with a subset of Sym.( {α1,α2,…,αn}) ≈Sn 

(symmetric group on n symbols). In fact, Gf  consists exactly of the 

permutations σ  of {α1,α2,…,αn}) such that, for P∈ F [X1,…,Xn]•, 

 

 

To see this, note that the kernel of the map 
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consists of the polynomials P(X1,…,Xn) such that P(α1,…,αn)= 0. Let σ 

be a permutation of the αi satisfying the condition (8). Then the map 

 

 

 

factors through the map (9), and defines an F -isomorphism Ff → Ff, i.e., 

an element of the Galois group. This shows that every permutation 

satisfying the condition (8) extends uniquely to an element of Gf , and it 

is obvious that every element of Gf arises in this way. This gives a 

description of Gf not mentioning fields or abstract groups, neither of 

which were available to Galois. Note that it shows again that(Gf : 1), 

hence [Ff :F], divides deg (f )! 

4.6 SOLVABILITY OF EQUATIONS 
 

For a polynomial f ∈ F [X], we say that f (X) = 0 is solvable in radicals 

if its solutions can be obtained by the algebraic operations of addition, 

subtraction, multiplication, division, and the extraction of mth roots, or, 

more precisely, if there exists a tower of fields 

 

 

 

such that 

 

 

 

 

4.6.1 THEOREM (GALOIS, 1832) Let F be a field of characteristic 

zero, and let f ∈ F [X]. The equation f (X) = 0 is solvable in radicals if 

and only if the Galois group of f is solvable. 

 

We’ll prove this later . Also we’ll exhibit polynomials f (X) ∈   [X]• 

with Galois group Sn, which are therefore not solvable when n ≥ 5. 
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4.6.2  REMARK When F has characteristic p, the theorem fails for two 

reasons: 

 

(a) f need not be separable, and so not have a Galois group; 

(b) X
p
 – X – a = 0 need not be solvable in radicals even though it is 

separable with abelian Galois group. 

 

If the definition of solvable is changed to allow extensions defined by 

polynomials of the type in (b) in the chain, then the theorem holds for 

fields F of characteristic p ≠ 0 and separable f ∈ F [X]. 

Check your Progress-2 

3.  Prove : If α is contained in a subfield of R that is Galois of degree 2
r
 

over  , then it is constructible 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4.   Explain  Solvability of equations 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4.7 LET US SUM UP 
 

We have discussed the Separable, normal, and Galois extensions. We 

seen the fundamental theorem of Galois theory. We have discussed the  

Galois group of a polynomial. We discussed about the Solvability of 

equations. 

 

4.8 KEYWORDS 
 

 Automorphism:   In mathematics, an automorphism is an 

isomorphism from a mathematical object to itself. It is, in some sense, a 

symmetry of the object, and a way of mapping the object to itself while 

preserving all of its structure.  



Notes 

75 

A polygon is any 2-dimensional shape formed with straight lines. 

Triangles, quadrilaterals, pentagons, and hexagons are all examples 

of polygons. 

 

Lemma- informal logic and argument mapping, 

a lemma (plural lemmas or lemmata) is a generally minor, proven 

proposition which is used as a stepping stone to a larger result 

 

4.9 QUESTIONS FOR REVIEW 

1. Let 

 

(a) Show that M is Galois over   with Galois group the 4-group C2  C2. 

(b) Show that E is Galois over   with Galois group the quaternion group. 

 

2.  Let E be a Galois extension of F with Galois group G, and let L be the 

fixed field of a subgroup H of G. Show that the automomorphism group 

of L/F is N/H where N is the normalizer of H in G. 

 

3  Let E be a finite extension of F . Show that the order of Aut(E / F ) 

divides the degree [E:F]. 

4.10 SUGGESTED READINGS AND 
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4.11 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Refer Definition from Remark – 4.2.5 & 4.2.8 

2. Provide  proof – 4.3.5 

3. Provide  proof– 4.4.1 

4. Provide explanation – 4.6  
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UNIT-5 COMPUTING GALOIS 

GROUPS II 
 

STRUCTURE 

5.0 Objectives 

5.1 Introduction 

5.2 When is Gf   An? 

5.3 When does Gf act transitively on the roots? 

5.4 Polynomials of degree at most three 

5.5 Quartic polynomials 

5.6 Examples of polynomials with Sp as Galois group over   

5.7 Finite fields 

5.8 Computing Galois groups over   

5.9 Let us sum up 

5.10 Keywords 

5.11 Questions for Review 

5.12 Suggested Reading and References 

5.13 Answers to Check your Progress 

5.0 OBJECTIVES 
 

Understand the various ways to Compute Galois Groups 

Understand Polynomials of degree at most three 

Comprehend the examples of Quartic polynomials 

Understand the concept of Finite fields 
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5.1 INTRODUCTION 
 

In this chapter, we investigate general methods for computing Galois 

groups 

5.2 WHEN IS GF   AN? 
 

Let σ be a permutation of the set {1,2,…, n} The pairs (i , j)with i < j but 

σ (i) > σ (j) are called the inversions of σ, and σ is said to be even or odd 

according as the number of inversions is even or odd.  

 

The signature of σ, sign (σ), is +1 or – 1  according as σ is even or 

odd. We can define the signature of a permutation σ of any set S of n 

elements by choosing a numbering of the set and identifying σ with a 

permutation of {1,…, n}. Then sign is the unique homomorphism 

Sym(S) → {  }  such that sign (σ) = – 1  for every transposition. In 

particular, it is independent of the choice of the numbering.  

 

Now consider a monic polynomial 

 

 

and let 

 

 

in some splitting field. Set 

 

The discriminant of f is defined to be D(f ).  Note that D(f ) is nonzero if 

and only if f has only simple roots, i.e., is separable. Let Gf be the Galois 

group of f, and identify it with a subgroup of Sym({α1,…, αn}) . 

 

5.2.1 PROPOSITION:  Let f ∈ F [X] be a separable polynomial, and let 

σ ∈ Gf . 
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(a)   ( )       ( ) ( ) where sign   ( ) is the signature of σ: 

(b)   ( )   ( )  

PROOF. Each inversion of σ introduces a negative sign into   ( ) and 

so (a) follows from the definition of sign (σ). The equation in (b) is 

obtained by squaring that in (a).  

 

While  ( ) depends on the choice of the numbering of the roots of f , D(f 

) does not. 

 

5.2.2 COROLLARY Let f (X) ∈ F [X]• be separable of degree n. Let 

Ff  be a splitting field for f and let Gf  = Gal(Ff /F ). 

(a) The discriminant D(f )∈ F . 

(b) The subfield of Ff corresponding to An   Gf  is F [ ( )]. 

 Hence 

 

PROOF. (a) The discriminant of f is an element of Ff fixed by 

  

and hence lies in F (by the fundamental theorem). 

 

(b) Because f has simple roots,  ( ) f ≠ 0, and so the formula   ( )  

     ( ) ( )shows that an element of Gf fixes  ( ) if and only if it lies 

in An. Thus, under the Galois correspondence, 

 

 

 

 

By completing the cube, one can put any cubic polynomial in this form 

(in characteristic ≠ 3). 

 

Although there is a not a universal formula for the roots of f in terms of 

its coefficients when the deg(f ) > 4, there is for its discriminant. 

However, the formulas for the discriminant rapidly become very 
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complicated, for example, that for X
5
 + aX

4
 +bX

3
 + cX

2
 + dX + e has 59 

terms. Fortunately, PARI knows them. For example, typing poldisc 

(X^3+a*X^2+b*X+c,X) returns the discriminant of X
3
 + aX

2
+bX

 

 + c, namely,  

 

 

 

 

5.2.3REMARK :  Suppose F R. Then D(f ) will not be a square if it is 

negative. It is known that the sign of D(f ) is ( – 1)
s
 where 2s is the 

number of non real roots of f in   (see ANT 2.40). Thus if s is odd, then 

Gf  is not contained in An. This can be proved more directly by noting that 

complex conjugation acts on the roots as the product of s disjoint 

transpositions. The converse is not true: when s is even, Gf  is not 

necessarily contained in An.  

 

When does Gf  act transitively on the roots?  

 

5.3 WHEN DOES GF ACT TRANSITIVELY 

ON THE ROOTS? 
 

5.2.4 PROPOSITION: Let f (X) ∈ F [X] be separable. Then f (X) is 

irreducible if and only if Gf  permutes the roots of f transitively.  

 

PROOF. ⇒W If α and β are two roots of (X) in a splitting field Ff  for f , 

then they both have (X) as their minimum polynomial, and so F [α] and F 

[β]  are both stem fields for f . Hence, there is an F –isomorphism 

 

 

 

Write Ff = F [α1, α2,…] with α1= α and α2, α3,… the other roots of f (X) 

Then the F -homomorphism α β: F [α] → Ff  extends (step by step) to an 

F –homomorphism Ff → Ff , which is an F -isomorphism sending α to β. 
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⇐:  Let g(X) ∈ F [X]be an irreducible factor of f , and let α be one of its 

roots. If  β is a second root of f , then (by assumption) β=σα  for some σ 

∈ Gf . Now, because g has coefficients in F , 

 

 

 

and so β is also a root of g. Therefore, every root of f is also a root of g, 

and so f(X) = g(X). 

 

Note that when f(X) is irreducible of degree n, n|(Gf :1) because [F [α]: 

F]  = n and [F [α]: F] divides [Ff : F] = (Gf : F) Thus Gf  is a transitive 

subgroup of Sn whose order is divisible by n. 

Check your Progress-1 

1. Define  signature of σ.  

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2.Explain -When does Gf act transitively on the roots? 

__________________________________________________________

__________________________________________________________

__________________________________________________________

  

5.4 POLYNOMIALS OF DEGREE AT 

MOST THREE 
 

EXAMPLE : Let f (X) ∈ F [X] be a polynomial of degree 2. Then f is 

inseparable ⇔ F has characteristic 2 and f (X) = X
2
 – a  for some a ∈ F ∖ 

F
 2

. If f is separable, then Gf   = 1(= A2)or S2 according as D(f ) is a square 

in F or not. 

 

EXAMPLE:  Let f (X) ∈ F [X] be a polynomial of degree 3. We can 

assume f to be irreducible, for otherwise we are essentially back in the 
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previous case. Then f is inseparable if and only if F has characteristic 3 

and f (X) = X
3
 – a  for some a ∈ F ∖ F

 3
. If f is separable, then Gf is a 

transitive subgroup of S3 whose order is divisible by 3. There are 

only two possibilities: Gf  = A3 or S3 according as D(f ) is a square in F or 

not. Note that A3 is generated by the cycle. 

 

For example, X
3
  – 3X + 1 is irreducible in  [X]. Its discriminant is 

–4(–3)
3
 –27 = 81 = 9

2
, and so its Galois group is A

3
.  

 

On the other hand, X
3
 + 3X +1 ∈  [X] is also irreducible, but its 

discriminant is –135 which is not a square in  , and so its Galois group 

is S3.  

 

5.5 QUARTIC POLYNOMIALS 
 

Let f (X) be a separable quartic polynomial. In order to determine Gf 

we’ll exploit the fact that S4 has 

 

as a normal subgroup — it is normal because it contains all elements of 

type 2+2 .Let E be a splitting field of f , and let f(X) = ∏(    ) in E. 

We identify the Galois group G f of f with a subgroup of the symmetric 

group Sym({α1, α2, α3, α4 }) Consider the partially symmetric elements 

 

 

 

 

They are distinct because the αi are distinct; for example 

 

The group Sym({α1, α2, α3, α4 }) permutes {α,β,γ}transitively. The 

stabilizer of each of α,β,γ must therefore be a subgroup of index 3 in S4, 

and hence has order 8. For example, the stabilizer of β is 〈(    ) (  ) 〉 

Groups of order 8 in S4 are Sylow 2-subgroups. There are three of them, 
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all isomorphic to D4. By the Sylow theorems, V is contained in a Sylow 

2-subgroup; in fact, because the Sylow 2-subgroups are conjugate and V 

is normal, it is contained in all three. It follows that V is the intersection 

of the three Sylow 2-subgroups. Each Sylow 2-subgroup fixes exactly 

one of α, β or γ and therefore their intersection V is the subgroup of Sym 

({α1, α2, α3, α4 }) fixing α, β and γ. 

 

5.5.1 LEMMA The fixed field of Gf   V is F [α, β, γ]. Hence 

F [α, β, γ] is Galois over F with Galois group Gf / Gf   V 

 

 

 

 

 

 

 

PROOF. The above discussion shows that the subgroup of Gf of 

elements fixing  F [α, β, γ] is Gf   V, and so       = D F F [α, β, γ] • 

by the fundamental theorem of Galois theory. The remaining statements 

follow from the fundamental theorem using that V is normal. 

 

Let M = F [α, β, γ] and let g(X) =(X – α ) (X – β ) (X – γ ) ∈ M[X]• — 

it is called the resolvent cubic of f . Every permutation of the α i (a 

fortiori, every element of Gf ) merely permutes α, β, γ and so fixes g(X). 

Therefore (by the fundamental theorem) g(X) has coefficients in F . 

More explicitly, we have. 

 

5.5.2 LEMMA : The resolvent cubic of 

 

is  

 

 

 

The discriminants of f and g are equal. 
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SKETCH OF PROOF. Expand f  = (X – α1) (X – α2) (X – α3) (X – α4)  

to express b,c,d,e in terms of α1, α2, α3, α4. Expand g = (X – α ) (X – β ) 

(X – γ ) to express the coefficients of g in terms of α1, α2, α3, α4 and 

substitute to express them in terms of b,c,d,e.  

 

Now let f be an irreducible separable quartic. Then G = Gf  is a transitive 

subgroup of S4 whose order is divisible by 4. There are the following 

possibilities for G: 

 

 

 

The groups of type D4 are the Sylow 2-subgroups discussed above, and 

the groups of type C4 are those generated by cycles of length 4. 

 

We can compute (G:V  G)from the resolvent cubic g, because G:V  G 

= Gal(M/F) and M is the splitting field of g. Once we know (G:V  G) 

we can deduce G except in the case that it is 2. If [M:F]= 2, then G  V = 

V or C2. Only the first group acts transitively on the roots of f , and so we 

see that in this case G = D4 or C4 according as f is irreducible or not in 

M[X]. 

 

EXAMPLE : Consider f (X) = X
4
– 4X + 2 ∈ Q[X]. It is irreducible by 

Eisenstein’s criterion and its resolvent cubic is g(X) = X
3
 – 8X –16, 

which is irreducible because it has no roots in F5. The discriminant of 

g(X) is – 4864, which is not a square, and so the Galois group of g(X) is 

S3. From the table, we see that the Galois group of f (X) is S4. 

 

 

EXAMPLE : Consider f (X) = X
4
 + 4X

2
 +2 ∈ Q[X]. It is irreducible by 
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Eisenstein’s criterion and its resolvent cubic is (X– 4)(X
2
 –8), thus M = 

 [√ ] . From the table we see that Gf is of type D4 or C4, but f factors 

over M (even as a polynomial in X2), and hence Gf is of type C4. 

 

EXAMPLE  Consider f (X) = D X
4
– 10X

2
+ 4 ∈  [X]. It is irreducible in 

Q[X]  because (by inspection) it is irreducible in  [X]. Its resolvent cubic 

is (X +10) (X +4) (X– 4) and so Gf  is of type V . 

 

EXAMPLE Consider f (X) = X
4
 ∈  [X]. It is irreducible by Eisenstein’s 

criterion and its resolvent cubic is g(X) = X
3
 + 8X. Hence M = Q[i√ ]•. 

One can check that f is irreducible over M, and Gf is of type D4. 

As we explained , PARI knows how to factor polynomials with 

coefficients in   [α] 

 

EXAMPLE : Consider f (X) = X
4
 –2cX

3
 –dX

2
 + 2cdX  – dc

2
 ∈  [X]• 

with a > 0, b > 0, c > 0, a > b and d = a
2
 – b

2
. Let r = d/c

2
 and let w be the 

unique positive real number such that r = w
3
/(w

2
 +4). Let m be the 

number of roots of f (X) in   (counted with multiplicities). The 

Galois group of f is as follows: 

o  If m = 0 and w not rational, then G is S4. 

o  If m = 1 and w not rational then G is S3. 

o  If w is rational and w
2
 +4 is not a square then G = D4. 

o  If w is rational and w
2
 + 4 is a square then G D V D C2  C2: 

 

This covers all possible cases. The hard part was to establish that m = 

2 could never happen. 

 

5.6 EXAMPLES OF POLYNOMIALS WITH 

SP AS GALOIS GROUP OVER   
 

The next lemma gives a criterion for a subgroup of Sp to be the whole of 

Sp. 

5.6.1 LEMMA :  For p prime, the symmetric group Sp is generated by 

any transposition and any p-cycle. 
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PROOF. After renumbering, we may assume that the transposition is  τ 

= (12) and we may write the p-cycle σ so that 1 occurs in the first 

position, σ =  (1i2 …ip). Now some power of σ will map 1 to 2 and will 

still be a p-cycle (here is where we use that p is prime). After replacing σ 

with the power, we have σ =  (2j3 …jp). and after renumbering again, we 

have σ =  (123 …p).  

 

Now 

 

 

and so lies in the subgroup generated by σ and τ. These transpositions 

generate Sp .  

 

5.6.2 PROPOSITION : Let f be an irreducible polynomial of prime 

degree p in  [X]. If f splits in C and has exactly two non real roots, then 

Gf = Sp. 

 

PROOF. Let E be the splitting field of f in C, and let ˛ 2 E be a root of f . 

Because f is irreducible, [ [X]:  ] = deg f = p, and so p|[E:   ] = (Gf :1 

). Therefore Gf contains an element of order p (Cauchy’s theorem) but 

the only elements of order p in Sp are p-cycles (here we use that p is 

prime again). 

Let σ be complex conjugation on C. Then σ transposes the two non real 

roots of f (X) and fixes the rest. Therefore Gf Sp and contains a 

transposition and a p-cycle, and so is the whole of Sp.  

It remains to construct polynomials satisfying the conditions of the 

Proposition. 

EXAMPLE : Let p ≥ 5 be a prime number. Choose a positive even 

integer m and even integers 
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The graph of g crosses the x-axis exactly at the points n1,…,np – 2 , and it 

doesn’t have a local maximum or minimum at any of those points 

(because the ni are simple roots). Thus e = min g'(x)=0 |g(x)| > 0, and we 

can choose an odd positive integer n such that 2/n < e. 

 

Consider 

 

 

 

As 2/n < e, the graph of f also crosses the x-axis at exactly p – 2 points, 

and so f has exactly two non-real roots. On the other hand, when we 

write 

 

 

 

the ai are all even and ap is not divisible by 2
2
, and so Eisenstein’s 

criterion implies that f is irreducible. Over  , f has p – 2 linear factors 

and one irreducible quadratic factor, and so it certainly splits over   

(high school algebra). Therefore, the proposition applies to f . 

 

5.7 FINITE FIELDS 
 

Let Fp =   /p , the field of p elements. As we noted in 1, every field E of 

characteristic p contains a copy of  p, namely, fm1E j m 2 Zg. No harm 

results if we identify  p with this subfield of E. 

Let E be a field of degree n over  p. Then E has q = p
n
 elements, and so 

E is a group of order q – 1. Therefore the nonzero elements of E are roots 

of X 
q – 1

 – 1, and all elements of E are roots of X
q
 – X. Hence E is a 

splitting field for X
q
 – X, and so any two fields with q elements are 

isomorphic.  

 

5.7.1 PROPOSITION :  Every extension of finite fields is simple. 
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PROOF. Consider E   F . Then    is a finite subgroup of the 

multiplicative group of a field, and hence is cyclic. If δ generates    as a 

multiplicative group, then certainly E = F [δ]. 

 

Now let E be a splitting field of f (X) = X
q
 – X, q = p

n
. The derivative f ' 

(X) = 1, which is relatively prime to f (X) (in fact, to every polynomial), 

and so f (X) has q distinct roots in E. Let S be the set of its roots. Then S 

is obviously closed under multiplication and the formation of inverses, 

but it is also closed under subtraction: if a
q
 =  a and b

q
 = b, then 

 

 

 

Hence S is a field, and so S = E. In particular, E has p
n
 elements. 

 

5.7.2 PROPOSITION : For each power q = p
n
 of p there exists a field 

 q with q elements. Every such field is a splitting field for X
q
 – X, and so 

any two are isomorphic. Moreover,  q is Galois over  q with cyclic 

Galois group generated by the Frobenius automorphism σ(a) = a
p
. 

 

PROOF. Only the final statement remains to be proved. The field  q is 

Galois over  p because it is the splitting field of a separable polynomial.  

 

is an automorphism of  q. An element a of We noted that 

 q is fixed by σ if and only if ap D a, but  p consists exactly of such 

elements, and so the fixed field of hi is  p. This proves that  q is 

Galois over  p and that 

 

 

5.7.3 COROLLARY :  Let E be a field with pn elements. For each 

divisor m of n, m ≥ 0, E contains exactly one field with p
m

 elements. 

 

PROOF. We know that E is Galois over  p and that Gal.E=Fp/ is the 

cyclic group of order n generated by σ. The group 〈 〉 has one subgroup 

of order n/m for each m dividing n, namely, 〈  〉, and so E has exactly 
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one subfield of degree m over  p for each m dividing n, namely, E〈  〉. 

Because it has degree m over  p, E〈  〉 has p
m

 elements.  

 

5.7.4 COROLLARY : Each monic irreducible polynomial f of degree 

djn in  p [X] occurs exactly once as a factor of    
 – X; hence, the 

degree of the splitting field of f is   d. 

 

PROOF. First, the factors of    
 – X are distinct because it has no 

common factor with its derivative. If f (X) is irreducible of degree d, then 

f (X) has a root in a field of degree d over  p. But the splitting field of 

   
 – X contains a copy of every field of degree d over  p with d|n. 

Hence some root of    
 – X is also a root of f (X) and therefore 

f (X) |   
 – X. In particular, f divides    

 – X, and therefore it splits in 

its splitting field, which has degree d over  p.  

 

5.7.5 PROPOSITION : Let   be an algebraic closure of  p. Then F 

contains exactly one field     for each integer n ≥ 1, and     consists of 

the roots of    
 – X. Moreover, 

 

 

The partially ordered set of finite subfields of   is isomorphic to the set 

of integers n ≥ 1 partially ordered by divisibility. 

 

PROOF. Obvious from what we have proved. 

 

5.7.6 PROPOSITION :  The field   p has an algebraic closure  . 

 

PROOF. Choose a sequence of integers 1 = n1 < n2 < n3 < …  such that 

ni|ni+1 for all i, and every integer n divides some ni. For example, let ni = 

i!. Define the fields      inductively as follows:     =  p;      is the 

splitting field of        over         .  

 

Then,                , and we define F = ⋃     . As a union of a 

chain of fields algebraic over  p, it is again a field algebraic over  p. 
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Moreover, every polynomial in  p [X]splits in  , and so it is an algebraic 

closure of   . 

 

5.7.7  REMARK :Since the     are not subsets of a fixed set, forming 

the union requires explanation. Define S to be the disjoint union of the 

   . For a , b ∈ S, set a ∼ b if a = b in one of the   . Then ∼ is an 

equivalence relation, and we let F = S/∼ .  

 

Any two fields with q elements are isomorphic, but not necessarily 

canonically isomorphic. However, once we have chosen an algebraic 

closure   of  p, there is a unique subfield of   with q elements.  

 

PARI factors polynomials modulo p very quickly. Recall that the syntax 

is factormod (f(X),p). For example, to obtain a list of all monic 

polynomials of degree 1,2,or 4 over  5, ask PARI to factor X
625

   X 

modulo 5 (note that 625 = 5
4
).  

 

5.8 COMPUTING GALOIS GROUPS OVER 

  
 

Recall that for a separable polynomial f ∈ F[X], Ff denotes a splitting 

field for F , and Gf  = Gal(Ff /F)  denotes the Galois group of f . 

Moreover, Gf   permutes the roots α1,…αm =  deg f , of f in Ff : 

 

 

5.8.1 PROPOSITION 4.27 Let f (X) be a separable polynomial in F[X] 

, and suppose that the orbits of Gf  acting on the roots of f have m1,…,mr 

elements respectively. Then f factors as f = f1,…, fr with fi irreducible of 

degree mi. 

 

PROOF. We may suppose that f is monic. Let α1,…αm, be the roots of f 

(X)  in Ff . The monic factors of f (X) in Ff [X] correspond to subsets S of 

{ α1,…αm } 
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and fS is fixed under the action of Gf  (and hence has coefficients in F ) if 

and only if S is stable under Gf  . Therefore the irreducible factors of f in 

F [X] are the polynomials fS corresponding to minimal subsets S of { 

α1,…αm }stable under Gf  , but these subsets S are precisely the orbits of 

Gf  in { α1,…αm }. 

 

5.8.2 REMARK : Note that the proof shows the following: let { α1,…αm 

} = ⋃   be the decomposition of {α1,…αm }.into a disjoint union of 

orbits for the group Gf ; then 

 

 

 

is the decomposition of f into a product of irreducible polynomials in 

F[X]  . Now suppose that F is finite, with p
n
 elements say. Then Gf is a 

cyclic group generated by the Frobenius automorphism σ: x→   
When 

we regard σ as a permutation of the roots of f , then the orbits of σ 

correspond to the factors in its cycle decomposition . Hence, if the 

degrees of the distinct irreducible factors of f are m1, m2,…mr, then 

σ has a cycle decomposition of type. 

 

 

5.8.3 PROPOSITION : Let R be a unique factorization domain with 

field of fractions F , and let f be a monic polynomial in R[X]. Let P be a 

prime ideal in R, let  ̅= R/P , and let   ̅be the image of f in  ̅[X] . 

Assume that   ̅is separable. Then f is separable, and its roots {α1,…αm} 

lie in some finite extension R' of R. Their reductions  ̅  modulo PR0 are 

the roots of  ,̅ and   ̅    Gf when both are identified with subgroups of 

Sym{α1,…αm} = Sym { ̅     ̅ }. 
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PROOF: Let f (X) be a separable polynomial in F [X] and α1,…αm its 

roots. Let T1,…, Tm be symbols. For a permutation σ of {1, …, m}, we 

let σα and σT respectively denote the corresponding permutations of 

{α1,…αm} and { T1,…, Tm } 

 

Let 

 

 

 

 

Clearly f (X,T) is symmetric in the αi, and so its coefficients lie in F .  

 

Let be the factorization of f (X,T) into a product of irreducible monic 

polynomials. Here we use that F [X, T1,…, Tm ] is a unique factorization 

domain. The permutations σ such that σT carries any one of the factors, 

say f1(X,T) into itself form a subgroup G of Sm. 

Check your Progress-2 

3. State the lemma gives a criterion for a subgroup of Sp to be the whole 

of S  

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4.  Describe a practical method for computing Galois groups over   and 

similar fields 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 



Notes 

93 

5.7 LET US SUM UP 
 

We have studied various ways to Compute Galois Groups. We have 

discussed about the Polynomials of degree at most three and solved 

examples of Quartic polynomials. We understood the concept of Finite 

fields 

5.8 KEYWORDS 
 

Maps- the term mapping, sometimes shortened as map, is a general 

function between two mathematical objects or structures. 

 

Inavariant -  an invariant is a property of a mathematical object (or a 

class of mathematical objects) which remains unchanged, after 

operations or transformations of a certain type are applied to the objects. 

 

Linear Factorization. A factored form of a polynomial in which 

each factor is a linear polynomial. 

 

5.9 QUESTIONS FOR REVIEW 
 

1. Find the splitting field of X
m – 1  ∈  p[X]•. 

2.  Find the Galois group of X
4
 –

 
2X

3
–

 
 8X–

 
 3 over  . 

3 Find the degree of the splitting field of X
8
– 2 over  . 
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5.11 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1. Provide the definition– 5.2 

2. Provide explanation – 5.3 

3. Provide statement and proof – 5.6.1  

4. Provide proposition with proof– 5.8.1   
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UNIT-6 APPLICATIONS OF GALOIS 

THEORY I 
 

STRUCTURE 

6.0 Objectives 

6.1 Introduction 

6.2 Primitive element theorem. 

6.3 Fundamental Theorem of Algebra 

6.4 Cyclotomic extensions 

6.5 Dedekind’s theorem on the independence of characters 

6.6 The Normal basis theorem 

6.7 Let us sum up 

6.8Keywords 

6.9 Questions for Review 

6.10 Suggested Reading and References 

6.11 Answers to Check your Progress 

6.0 OBJECTIVES 
 

Enumerated the Primitive element theorem 

Comprehend the Fundamental Theorem of Algebra 

Understand the concept of Cyclotomic extensions 

Comprehend Dedekind’s theorem on the independence of characters and 

The Normal basis theorem 

 

6.1 INTRODUCTION 
 

In this chapter, we apply the fundamental theorem of Galois theory to 

obtain other results about polynomials and extensions of fields. 
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6.2 PRIMITIVE ELEMENT THEOREM. 
 

Recall that a finite extension of fields E/=F is simple if E = F [α] for 

some element α of E. Such an α is called a primitive element of E. We’ll 

show that (at least) all separable extensions have primitive elements. 

 

Consider for example  [√  √ ]  . We know that its Galois group over 

Q is a 4-group 〈   〉 where 

 

 

 

 

Note that  

 

 

 

 

 

These all differ from √  √ , and so only the identity element of 

Gal.(  [√  √ ]  ) fixes the elements of  [√  √ ]. According to the 

fundamental theorem, this implies that √  √  is a primitive element: 

 

 

 

It is clear that this argument should work much more generally. 

 

Recall that an element α algebraic over a field F is separable over F if its 

minimum polynomial over F has no multiple roots. 

 

6.2.1 THEOREM : Let E = F [α1,…, αr] be a finite extension of F , and 

assume that α2,…, αr are separable over F (but not necessarily α1). Then 

there is an element γ ∈ E such that 

E = F[γ]. 
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PROOF. For finite fields,we may assume F to be infinite. It 

suffices to prove the statement for r = 2, for then 

 

 

Thus let E = F [α, β] with β separable over F . Let f and g be the 

minimum polynomials of α and β over F , and let L be a splitting field for 

fg containing E. Let α1 = α,…, αs be the roots of f in L, and let β1 = β, 

β2,… βt be the roots of g. For j ≠ 1, βj ≠  β, and so the the equation 

 

 

 

has exactly one solution, namely, 

 

If we choose a c ∈F different from any of these solutions (using that F is 

infinite), then 

 

 

 

Let γ=α+cβ . I claim that 

 

 

 

The polynomials g(X)and f (γ –cX) have coefficients in F [γ] , and have 

β as a root: 

 

 

In fact, β is their only common root, because we chose c so that γ –cβj ≠ 

αi unless i = 1 = j . 

Therefore 
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Here we computed the gcd in L[X], but this is equal to the gcd computed 

in F [γ] [X]. Hence β ∈  F [γ] , and this implies that α =γ – cβ also lies in 

F [γ] . This proves the claim.  

 

6.2.2 REMARK : When F is infinite, the proof shows that can be chosen 

to be of the form 

 

 

 

If F [α1,…, αr] • is Galois over F , then an element of this form will be a 

primitive element provided it is moved by every nontrivial element of the 

Galois group. This remark makes it very easy to write down primitive 

elements. 

 

Our hypotheses are minimal: if two of the α are not separable, then the 

extension need not be simple. Before giving an example to illustrate this, 

we need another result. 

 

6.2.3 PROPOSITION: Let E = F [γ] be a simple algebraic extension of 

F . Then there are only finitely many intermediate fields M, 

 

 

PROOF. Let M be such a field, and let g(X) be the minimum polynomial 

of over M . Let M' be the subfield of E generated over F by the 

coefficients of g(X). Clearly M'   M , but (equally clearly) g(X) is the 

minimum polynomial of over M'. Hence 

 

 

 

and so M = M', we have shown that M is generated by the coefficients of 

g(X). 

Let f(X) be the minimum polynomial of γ over F . Then g(X) divides 

f(X) in M[X], and hence also in E[X]. Therefore, there are only finitely 

many possible g, and consequently only finitely many possible M 
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6.2.4 REMARK 5.4 (a) Note that the proof in fact gives a description of 

all the intermediate fields: each is generated over F by the coefficients of 

a factor g(X) of f(X) in E[X]. The coefficients of such a g(X) are partially 

symmetric polynomials in the roots of f(X) (that is, fixed by some, but 

not necessarily all, of the permutations of the roots). 

 

(b) The proposition has a converse: if E is a finite extension of F and 

there are only finitely many intermediate fields M , F   M  E, then E is 

a simple extension of F . This gives another proof of Theorem 6.2.1 in 

the case that E is separable over F , because Galois theory shows that 

there are only finitely many intermediate fields in this case (even the 

Galois closure of E over F has only finitely many intermediate fields). 

 

EXAMPLE : The simplest nonsimple algebraic extension is k(X,Y )   

k(X
p
,Y 

p
), where k is an algebraically closed field of characteristic p. Let 

F = k(X
p
,Y 

p
), For all c ∈ k,  

 

 

 

We have with the degree of each extension equal to p. If 

 

 

 

then F [X+ cY ] would contain both X and Y , which is impossible 

because [k(X,Y) : F] = p
2
. Hence there are infinitely many distinct 

intermediate fields. Alternatively, note that the degree of k(X,Y) over 

k(X
p
,Y 

p
), is p

2
, but if α ∈ k(X,Y) then α

p
 ∈ k(X

p
,Y 

p
), and so α generates 

a field of degree at most p over  k(X
p
,Y 

p
). 

6.3 FUNDAMENTAL THEOREM OF 

ALGEBRA 
 

We finally prove the misnamed fundamental theorem of algebra. 

 

6.3.1 THEOREM :  The field   of complex numbers is algebraically 

closed. 
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PROOF. We define   to be the splitting field of X
2
+1 over  , and we let 

i denote a rootof X
2
+1 in  . Thus   =  [i] . We have to show that every f 

(X) ∈  [X] • has aroot in C. We may suppose that f is monic, 

irreducible, and ≠ X
2
+1. 

 

We’ll need to use the following two facts about  : 

 positive real numbers have square roots; 

 every polynomial of odd degree with real coefficients has a real 

root. 

 

Both are immediate consequences of the Intermediate Value Theorem, 

which says that a continuous function on a closed interval takes every 

value between its maximum and minimum values (inclusive). 

(Intuitively, this says that, unlike the rationales, the real line has 

no ―holes‖.) 

We first show that every element of   has a square root. Write α = a + bi, 

with a, b ∈  , and choose c, d to be real numbers such that 

 

 

 

 

Then c
2
 - d

2
 = a and (2cd)

2
 = b

2
. If we choose the signs of c and d so that 

cd has the same sign as b, then (c + di )
2
 =α  and so c + di is a square root 

of α. 

 

Let f (X) ∈   [X], and let E be a splitting field for f (X) (X
2
+ 1). Then E 

contains  , and we have to show that it equals  . Since   has 

characteristic zero, the polynomial is separable, and so E is Galois over 

 . Let G be its Galois group, and let H be aSylow 2-subgroup of G. 

 

Let M = E
H
 and let α ∈ M. Then M has of degree (G: H) over  , which is 

odd, andso the minimum polynomial of α over R has odd degree (by the 

multiplicativity of degrees). This implies that it has a real root, and so is 

of degree 1. Hence α ∈  , and so M =   and G = H. 
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We deduce that Gal(E/   ) is a 2-group. If it is ≠ 1, then it has a 

subgroup N of index 2. The field E
N
 has degree 2 over  , and so it is 

generated by the square root of an element of   (see 3.24), but all square 

roots of elements of   lie in  . Hence E
N 

=  , which is a contradiction. 

Thus Gal(E/  ) =1and E =  .  

 

COROLLARY 5.7 (a) The field   is the algebraic closure of  . 

(b) The set of all algebraic numbers is an algebraic closure of  : 

 

PROOF. Part (a) is obvious from the definition of ―algebraic closure‖ 

and (b) follows from Corollary in Unit 2 

Check your Progress-1 

1. Explain   Primitive element theorem 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. State two facts about Fundamental theorem of Algebra 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

6.4 CYCLOTOMIC EXTENSIONS 
 

A primitive n
th

 root of 1 in F is an element of order n in    . Such an 

element can exist only if F has characteristic 0 or if its characteristic p 

does not divide n. 

 

6.4.1 PROPOSITION : Let F be a field of characteristic 0 or 

characteristic p not dividing n, and let E be the splitting field of X
n
 – 1 . 

 

(a) There exists a primitive nth root of 1 in E. 

 

(b) If δ is a primitive nth root of 1 in E, then E = F[δ]. 
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•. 

(c) The field E is Galois over F ; for each σ ∈ Gal(E/F ), there is an i ∈ 

(    )  such that σδ = δ
i 
for all δ with δ

n
 = 1; the map σ   [i] is an 

injective homomorphism  

 

 

 

PROOF. (a) The roots of X
n
 – 1  are distinct, because its derivative n X

n
 

– 1  has only zero as a root (here we use the condition on the 

characteristic), and so E contains n distinct n
th

 roots of 1. The n
th

 roots of 

1 form a finite subgroup of   , and so they form a cyclic group. Every 

generator has order n, and hence is a primitive nth root of 1. 

 

(b) The roots of X
n
 – 1  are the powers of δ, and F [δ ] contains them all. 

 

(c) The extension E = F is Galois because E is the splitting field of a 

separable polynomial. 

 

If  δ0 is one primitive nth root of 1, then the remaining primitive n
th

 roots 

of 1 are the elements   
 with i relatively prime to n. Since, for any 

automorphism σ of E, σ δ0 is again a primitiventh root of 1, it equals   
  

for some i relatively prime to n, and the map σ   i mod n isinjective 

because  δ0 generates E over F . It obviously is a homomorphism. 

Moreover, for any other n
th

 root of 1, say, δ =    
 ,we have 

 

 

 

and so the homomorphism does not depend on the choice of δ0.  

 

The map σ  [i] : Gal(F [δ]/F)→ (    )  need not be surjective. For 

example, if F =    then its image is{1}, and if F =  , it is either {[1]}, or 

{[-1]}, {[1]}. On the otherhand, when n = p is prime, we showed in that 

[      ] = p – 1, and so the map is surjective. We now prove that the 

map is surjective for all n when F =  . 
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The polynomial X
n
 – 1  has some obvious factors in Q[X], namely, the 

polynomials X
d
 – 1   for any d|n. When we remove all factors of X

n
 – 1   

of this form with d < n, thepolynomial we are left with is called the n
th

 

cyclotomic polynomial  n. Thus 

 

 

It has degree  (n), the order of . (    )  Since every n
th

 root of 1 is a 

primitive d
th

 rootof 1 for exactly one d dividing n, we see that 

 

 

This gives an easy inductive method of computing the cyclotomic 

polynomials. Alternatively type polcyclo (n,X) in PARI. 

 

Because X
n
 – 1   has coefficients in   and is monic, every monic factor 

of it in Q[X]has coefficients in   . In particular, the cyclotomic 

polynomials lie in  [X]. 

6.4.2 LEMMA: Let F be a field of characteristic 0 or p not dividing n, 

and let δ be a primitive n
th

 root of 1 in some extension field. The 

following are equivalent: 

(a) the nth cyclotomic polynomial  n is irreducible; 

(b) the degree  [F [δ]: F]=    

(c) the homomorphism 

 

 

 

is an isomorphism. 
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PROOF. Because δ is a root of  n, the minimum polynomial of δ 

divides  n. It equals it if and only if [F [δ]: F]=    which is true if and 

only if the injection Gal. [F [δ]: F] →(    )  is onto.  

 

6.4.3 THEOREM The nth cyclotomic polynomial  n is irreducible in 

Q[X]. 

 

PROOF. Let f (X)be a monic irreducible factor of  n in Q(X). Its roots 

will be primitive n
th

 roots of 1, and we have to show they include all 

primitive nth roots of 1. For this it suffices to show that  

 

Such an i is a product of primes not dividing n, and so it suffices to show 

that 

 

Write 

 

 

 

6.4.4 Proposition : shows that f (X) and g(X) lie in     . Suppose that δ 

is a root of f but that, for some prime p not dividing n, δ 
p
 is not a root of 

f . Then  δ 
p
 is a root of g(X) , g(δ 

p
) = 0, and so δ is a root of g(X

p
). As f 

(X) and g(X
p
) have a common root, they have a nontrivial common 

factor in     . (2.10), which automatically lies in     .  

 

Write h(X)    ̅(X) for the quotient map     →      . •, and note that, 

because f (X) and g.Xp/ have a common factor of degree _ 1 in Z.X•, so 

also do   ̅(X) and  ̅(X
p
) in      . The mod p binomial theorem shows 

that 
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 (recall that a
p
 = a for all a ∈   ), and so   ̅(X) and   ̅(X) have a common 

factor of degree ≥ 1 in      . Hence X
n
 – 1, when regarded as an 

element of      , has multiple roots, but we saw in the proof of 

Proposition 6.4.1  that it doesn’t.  Contradiction. 

 

6.4.5 REMARK :  This proof is very old — in essence it goes back to 

Dedekind in 1857 —but its general scheme has recently become popular: 

take a statement in characteristic zero, reduce modulo p (where the 

statement may no longer be true), and exploit the existence of the 

Frobeniusautomorphism a  a
p
 to obtain a proof of the original 

statement. For example, commutative algebraists use this method to 

prove results about commutative rings, and there are theorems about 

complex manifolds that were first proved by reducing things to 

characteristic p: 

 

There are some beautiful relations between what happens in 

characteristic 0 and incharacteristic p. For example, let f (X1,...,Xn) ∈   

[X1,...,Xn]. We can 

 

(a) look at the solutions of f = 0 in  , and so get a topological space; 

(b) reduce mod p, and look at the solutions of    ̅ = 0 in    . 

 

6.4.6 THEOREM : The regular n-gon is constructible if and only if n = 

2
k
p1 ...ps where the pi are distinct Fermat primes. 

 

PROOF. The regular n-gon is constructible if and only if cos 2π/ 

n (equivalently, δ = e
2πi/n

)is constructible. We know that  [δ] is Galois 

over  , and so δ is constructible if and only if [ [δ] :  ] is a power of 2. 

When we write n =∏  ( ) 

 

 

 

and this is a power of 2 if and only if n has the required form.  
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6.4.7 REMARK : (a) As mentioned earlier, the Fermat primes are those 

of the form    
+ 1.It is known that these numbers are prime when r = 0, 

1,2,3,4, but it is not known whetheror not there are more Fermat primes. 

Thus the problem of listing the n for which the regular n-gon is 

constructible is not yet solved . 

 

(b) The final section of Gauss’s, DisquisitionesArithmeticae (1801) is 

titled ―Equationsdefining sections of a Circle‖. In it Gauss proves that the 

nth roots of 1 form a cyclic group, that X
n
 – 1 is solvable (this was before 

the theory of abelian groups had been developed,and before Galois), and 

that the regular n-gon is constructible when n is as in the Theorem. He 

also claimed to have proved the converse statement. This leads some 

people to credithim with the above proof of the irreducibility of _n, but 

in the absence of further evidence, I’m sticking with Dedekind. 

 

6.5 DEDEKIND’S THEOREM ON THE 

INDEPENDENCE OF CHARACTERS 
 

 

6.5.1 THEOREM (DEDEKIND) Let F be a field and G a group. Then 

every finite set {χ1,...,χm}of group homomorphisms G →     is linearly 

independent over F , i.e., 

 

PROOF. We use induction on m. For m = 1, the statement is obvious. 

Assume it for m – 1,and suppose that, for some set {χ1,...,χm}of 

homomorphisms G →    and ai ∈ F ,  

 

 

 

We have to show that the ai  are zero. As χ1 and χ2 are distinct, they will 

take distinct values on some g ∈ G. On replacing x with gx in the 

equation, we find that 
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On multiplying the first equation by χ1 (g) and subtracting it from the 

second, we obtain the equation 

 

 

The induction hypothesis shows that   
  = 0 for i = 2, 3, .. As χ2 (g) – χ1 

(g) ≠ 0, this implies that a2 = 0, and so 

 

 

 

The induction hypothesis now shows that the remaining ai are also zero.  

 

6.5.2 COROLLARY Let F and E be fields, and letσ1,... ,σm be distinct 

homomorphisms F → E. Then σ1,... ,σm are linearly independent over E: 

 

PROOF. Apply the theorem to χ2 = σ1|   

 

6.5.3 COROLLARY: Let E be a finite separable extension of F of 

degree m. Let σ1,... ,σm be a basis for E as an F -vector space, and let 

σ1,... ,σm be distinct F –homomorphismsfrom E into a field . Then the 

matrix whose (i , j)
 th

-entry is σi σj is invertible. 

 

PROOF. If not, there exist ci ∈   such that ∑     (  )    
     for all j . 

But the map∑          
    is F -linear, and so this implies that 

∑     (  )    
    or all α ∈ E  which contradicts Corollary 6.5.2 

 

6.6 THE NORMAL BASIS THEOREM 
 

6.6.1 DEFINITION Let E be a finite Galois extension of F . A basis for 

E as an F –vectorspace is called a normal basis if it consists of the 

conjugates of a single element of E. In other words, a normal basis is one 

of the form 
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for some α ∈ E. 

 

6.6.2 THEOREM (NORMAL BASIS THEOREM) Every Galois 

extension has a normal basis. 

 

The group algebra FG of a group G is the F -vector space with basis the 

elements of G endowed with the multiplication extending that of G. Thus 

an element of FG is a sum ∑     ∈ ,    ∈ G 

 

 

 

 

Every F -linear action of G on an F -vector space V extends uniquely to 

an action of FG on V . 

 

Let E/F be a Galois extension with Galois group G. Then E is an FG-

module, and Theorem 6.6.2  says that there exists an element α ∈ E such 

that the map 

 

 

 

is an isomorphism of FG-modules, i.e., that E is a free FG-module of 

rank 1: 

 

We give three proofs of Theorem 5.18. The first assumes that F is 

infinite and the secondthat G is cyclic. Since every Galois extension of a 

finite field is cyclic (4.20), this covers allcases. The third proof applies to 

both finite and infinite fields, but uses the Krull-Schmidttheorem. 

 

PROOF FOR INFINITE FIELDS 
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6.6.3 LEMMA Let f ∈ F [X1,..., Xm], and let S be an infinite subset of F . 

If f(a1,..., am) = 0 for all a1,...,am ∈ S, then f is the zero polynomial (i.e., f 

= 0 in F [X1,..., Xm]). 

 

PROOF. We prove this by induction on m. For m =1, the lemma 

becomes the statement that a nonzero polynomial in one symbol has only 

finitely many roots . For m > 1,rite f as a polynomial in Xm with  

coefficients in F [X1,..., Xm– 1], say, 

 

 

 

For any m – 1 /-tuple a1,..., am– 1 of elements of S, 

 

 

 

is a polynomial in Xm having every element of S as a root. Therefore, 

each of its coefficientsis zero, ci (a1,..., am–1) = 0 for all i . Since this holds 

for all (a1,..., am–1) the induction hypothesis shows that ci. (X1,..., Xm– 1)  

is the zero polynomial. 

 

We now prove 6.6.2 in the case that F is infinite. Number the elements of 

G as  σ1,..., σm with σ1 the identity map. 

 

Let f ∈ F [X1,..,Xm]•have the property that 

 

 

 

for all α ∈ E. For a basis α1,..., αm of E over F , let 

 

 

 

The hypothesis on f  implies that g(a1,...,am)  =  0 for all ai ∈ F , and so g 

= 0 (becauseF is infinite). But the matrix (σiαj) is invertible Since g is 

obtained from f  by an invertible linear change of variables, f can be 
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obtained from g by the inverse linear changeof variables. Therefore it 

also is zero. 

 

Write Xi = X(σi ), and let A =  (X(σiσj)), i.e., A is the m m matrix 

having Xk in the (i, j)
th

 place if σiσ = σk. Then det(A) is a polynomial in 

X1,...,Xm, say, det(A)= h (X1,...,Xm). Clearly, h(1,0,..., 0) is the 

determinant of a matrix having exactly one 1 in each row and each 

column and its remaining entries 0. Hence the rows of the matrix are a 

permutation of the rows of the identity matrix, and so its determinant is 

 1. In particular, h is not identically zero, and so there exists an α ∈    

such that h.(σ1α,..., σ m α ) = det(σiσjα) is nonzero. We’ll show that 

{σiα}is a normal basis. For this, it suffices to show that the σiα 

are linearly independent over F . Suppose that 

 

 

 

for some aj ∈ F . On applying α1,..., αm successively, we obtain a system 

of m-equations 

 

 

 

in the m ―unknowns‖ aj . Because this system of equations is non 

singular, the aj are zero.This completes the proof of the theorem in the 

case that F is infinite. 

 

6.6.4 PROOF WHEN G IS CYCLIC. 

Assume that G is generated by an element σ0 of order n. Then .EWF • D 

n. The minimum polynomial of σ0 regarded as an endomorphism of the F 

-vector space E is the monic polynomial in F[X] of least degree such that 

P(σ0)= 0 (as an endomorphism of E). It has the property that it divides 

every polynomial Q(X) ∈ F [X] such that Q (σ0 )= 0. Since   
  = 1, P(X) 

divides Xn– 1. On the other hand, Dedekind’s theorem on the 

independenceof characters  implies that 1, σ0,...,   
     are linearly 

independent over F , and so deg P(X) > n –1. We conclude that P(X) = 

Xn – 1. Therefore, as an F (X)-module with X acting as σ0, E is 
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isomorphic to F [X] =(Xn–1). For any generator α of E as an F [X] -

module, α, σ0α,..., σ0α
n – 1  

is an F -basis for E. 

Check your progress 

3. Explain  cyclotomic polynomial 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4.State  and prove Dedekind’s theorem on the independence of characters 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

 

6.7  LETS SUM UP 
 

We have discussed various important theorem’s like the Primitive 

element theorem, the Fundamental Theorem of Algebra, Comprehend 

Dedekind’s theorem on the independence of characters and The Normal 

basis theorem. We seen in details the concept of Cyclotomic extensions 

6.8 KEYWORDS 
 

 Identity element -or neutral element, is a special type of element of a set 

with respect to a binary operation on that set, which leaves 

any element of the set unchanged when combined with it. 

 

Non-singular matrix:  is a square one whose determinant is not zero 

 

Determinant - In linear algebra, the determinant is a scalar value that 

can be computed from the elements of a square matrix and encodes 

certain properties of the linear transformation described by the matrix 

 

6.9 QUESTIONS FOR REVIEW 
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1. For a ∈  , let Ga be the Galois group of X
4
 + X

3
 + X

2
 + X + a. Find 

integers a1,a2,a3,a4 such that i ≠ j ⇒    
is not isomorphic to    

. 

2. State and prove the Normal Basis Theorem. 
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6.11 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1.  Provide the statement and proof of theorem – 6.2  

2. Provide facts  – 6.3 

3. Provide explanation – 6.4 

4. Provide statement and proof of theorem – 6.5  
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UNIT-7 APPLICATIONS OF GALOIS 

THEORY II 
 

STRUCTURE 

7.0 Objectives 

7.1 Introduction 

7.2 Hilbert’s Theorem 90 

7.3 Cyclic extensions 

7.4 Kummer theory 

7.5 Proof of Galois’s solvability theorem 

7.6 Symmetric polynomials 

7.7 Let us sum up 

7.8 Keywords 

7.9 Questions for Review 

7.10 Suggested Reading and References 

7.11 Answers to Check your Progress 

7.0 OBJECTIVES 
 

Comprehend Hilbert’s Theorem 90 

Understand the concept of Cyclic extensions 

Enumerate Kummer theory and Proof of Galois’s solvability theorem 

Understand the concept of Symmetric polynomials 

 

7.1 INTRODUCTION 
 

In this chapter, we continue to apply the fundamental theorem of Galois 

theory to obtain other results about polynomials and extensions of fields. 

 



Notes 

114 

7.2 HILBERT’S THEOREM 90 
 

Let G be a group. A G-module is an abelian group M together with an 

action of G, i.e., a map G   M→M such that 

 

 

 

 

 

Thus, to give an action of G on M is the same as giving a homomorphism 

G → Aut (M) (automorphisms of M as an abelian group). 

 

EXAMPLE Let E be a Galois extension of F with Galois group G. Then 

(E , +) and (  ) are G-modules. 

 

Let M be a G-module. A crossed homomorphism is a map f : G →M such 

that 

 

 

 

Note that the condition implies that f (1) = f (1 . 1) = f (1) + f (1), and so 

f (1) = 0. 

 

EXAMPLE (a) Let f WG! M be a crossed homomorphism. For any _ 2 

G, 

 

 

 

 

 

 

Thus, if G is a cyclic group of order n generated by σ, then a crossed 

homomorphism f : G →M is determined by its value, x say, on σ, and x 

satisfies the equation 
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Moreover, if x ∈ M satisfies (12), then the formulas  

 

 

 

define acrossed homomorphism f : G → M. Thus, for a finite group G = 

〈 〉, there is a one-to-one correspondence 

 

 

 (b) For every x ∈ M, we obtain a crossed homomorphism by putting 

 

 

 

A crossed homomorphism of this form is called a principal crossed 

homomorphism. 

 

(c) If G acts trivially on M, i.e.,σm =  m for all σ ∈ G and m ∈ M, then a 

crossed homomorphism is simply a homomorphism, and there are no non 

zero principal crossed homomorphisms. 

 

The sum and difference of two crossed homomorphisms is again a 

crossed homomorphism, and the sum and difference of two principal 

crossed homomorphisms is again principal. Thus we can define 

 

 

 

 

 

 (quotient abelian group). The cohomology groups H
n
(G, M) have been 

defined for all n ∈ N, but since this was not done until the twentieth 

century, it will not be discussed in this course. An exact sequence of G-

modules 
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gives rise to an exact sequence 

 

 

Let m" ∈ M"G, and let m ∈ M map to m". For all σ ∈ G, σ m – m  lies in 

the submodule M' of M, and the crossed homomorphism σ   σm – m : G 

→M' represents d(m").  

 

EXAMPLE : Let _    ̃    be the universal covering space of a 

topological space X,and let   be the group of covering transformations. 

Under some fairly general hypotheses, a   -module M will define a sheaf  

ℳon X, and H
1
(X, ℳ)   H

1
(Γ; ℳ). For example, when ℳ =   with the 

trivial action of  Γ , this becomes the isomorphism H
1
(X,  )   H

1
(Γ    ). 

Hom(Γ     ) 

 

7.2.1 THEOREM Let E be a Galois extension of F with group G; then 

H
1
(G, E) = 0, i.e.,every crossed homomorphism G →   is principal. 

 

PROOF. Let f be a crossed homomorphism G →   . In multiplicative 

notation, this means that 

 

 

 

and we have to find a γ ∈    such that f (σ) = 
  

 
 for all σ ∈ G. Because 

the f (τ) are nonzero, Corollary 6.5.2 implies that 

 

 

is not the zero map, i.e., there exists an α ∈ E such that 
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But then, for σ ∈ G, 

 

 

 

 

 

 

which equals f (σ 
– 1

)β because, as τ runs over G, so also does στ.  

 

Therefore, f (σ) = 
  

( )
 and we can take β = γ 

– 1 
. 

 

Let E be a Galois extension of F with Galois group G. We define the 

norm of an element α ∈ E to be 

 

 

 

For τ ∈ G, 

 

 

 

 

and so Nm α ∈ F . The map 

 

 

is a obviously a homomorphism. 

 

EXAMPLE : The norm map       is α → |α|
2
 and the norm map 

  √       is a+ b√     a
2
 – db

2
. 

 

We are interested in determining the kernel of the norm map. Clearly an 

element of the form 
 

  
 has norm 1, and our next result shows that, for 

cyclic extensions, all elements withorm 1 are of this form. 



Notes 

118 

 

7.2.2 COROLLARY (HILBERT’S THEOREM 90) Let E be a finite 

cyclic extension of F and let σ generate Gal(E/F ). Let α ∈    if Nm E/F α 

=  1, then α = σβ for some α ∈ E. 

 

PROOF. Let m = [E: F] . The condition on α is that α  σα ... σ 
m – 1

 α = 1, 

and so  there is a crossed homomorphism f : 〈 〉 →    with f (σ) = α  

Theorem 7.2.1  now shows that f is principal, which means that there is a 

β with f (σ) = 
 

  
 

7.3 CYCLIC EXTENSIONS 
 

Let F be a field containing a primitive nth root of 1, some n≥ , and write 

μn for the groupof nth roots of 1 in F . Then μn is a cyclic subgroup of F𝗑 

of order n with generator Ϛ say.In this section, we classify the cyclic 

extensions of degree n of F. 

 

Consider a field E = F[α] generated by an element _ whose nth power 

(but no smallerpower) is in F. Then α is a root of X
n
- a, and the 

remaining roots are the elements Ϛi
α, 1  i n – 1 . Since these all lie in 

E, E is a Galois extension of F, with Galois group G say. For every σ∈G, 

σα is also a root of X
n
 -a, and so σα  = Ϛi

α for some i . Hence σα/α∈μn. 

The map 

 

Because α generates E over F , the map is injective. If it is not surjective, 

then G maps intoa subgroup μd of μn, some d|n, d <n. In this case, (σα/α)
d 

= 1, i.e., σα
d
=α

d, for all σ∈G, and so α
d ∈ F, contradicting the hypothesis 

on α. Thus the map is surjective. We have proved the first part of the 

following statement. 

 

7.3.1 PROPOSITION Let F be a field containing a primitive nth root of 

1. Let E = F [α]where α
n∈ F and no smaller power of α is in F . Then E is 
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a Galois extension of F withcyclic Galois group of order n. Conversely, 

if E is a cyclic extension of F of degree n, then E = F[α] for some α with 

α
n∈F . 

 

PROOF. It remains to prove the last statement. Let σ generate G and let 

Ϛ generate μ
n
. It suffices to find an element α ∈ E𝗑 such that σα= Ϛ-1α, for 

then α
n
 is the smallest powerof α lying in F . As 1   σ  . σn-1

 are distinct 

homomorphisms F𝗑 → F𝗑, Dedekind’sTheorem shows that ∑   
   Ϛiσi is not 

the zero function, and so there exists a   such that α ∑Ϛiσi ≠0. Now 

σα= Ϛ-1α. 

 

ASIDE 5.27 (a) It is not difficult to show that the polynomial X
n
-a is 

irreducible in F[X] if a isnot a pth power for any prime p dividing n. 

When we drop the condition that F contains a primitiventh root of 1, this 

is still true except that, if 4/n, we need to add the condition that a∈ - 4F
4
.  

 

(b) If F has characteristic p (hence has no pth roots of 1 other than 1), 

then X
p
-X - a is irreducible in F[X] unless a= b

p
- b for some b ∈ F , and 

when it is irreducible, its Galois group iscyclic of order p (generated by 

α α + 1 where α is a root). Moreover, every cyclic extension of F 

of degree p is the splitting field of such a polynomial. 

 

7.3.2 PROPOSITION : Let F be a field containing a primitive nth root 

of 1. Two cyclicextensions  [α
 

 
]      [ 

 

 
]of F of degree n are equal 

if and only if a =b
r
c

n
 for some r ∈  relatively prime to n and some c ∈ 

F𝗑, i.e., if and only if a and b generate the samesubgroup of F𝗑 = F𝗑n 
. 

PROOF. Only the ―only if‖ part requires proof. We are given that F[α] = 

F[α] = F[ ] with α
n
=αand  n

=b. Let σ be the generator of the Galois 

group with σα= Ϛα, and let σ =Ϛi ,(i,n) = 1. We can write 
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On comparing this with σ = Ϛi , we find that Ϛj
cj=Ϛj

cj for all j . Hence 

cj= 0 forj ≠i, and therefore   = ciα
i
 . 

Check your Progress-1 

1. Explain   principal crossed homomorphism. 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

2. State  and prove  HILBERT’S THEOREM 90 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

7.4 KUMMER THEORY 
 

Throughout this section, F is a field and Ϛ is a primitive nth root of 1 in F 

. In particular, F either has characteristic 0 or characteristic p not dividing 

n. 

The last two proposition give us a complete classification of the cyclic 

extensions of F of degree n. We now extend this to a classification of all 

abelian extensions of F whose Galois group has exponent n. (Recall that 

a group G has exponentn if σn
= 1 for all σ∈ G and n is the smallest 

positive integer for which this is true. A finite abelian group of exponent 

n is isomorphic to a subgroup of ( /n )
r
 for some r.) 

 

Let E/F be a finite Galois extension with Galois group G. From the exact 

sequence 
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This map can be described as follows: let a be an element of F𝗑 that 

becomes an nth powerin E, say a=α
n
; then a maps to the homomorphism 

σ  
  

 
. If G is abelian of exponentn, then 

 

 

 

 

7.4.1 THEOREM : The map 

 

 

 

defines a one-to-one correspondence between the sets 

(a) of finite abelian extensions of F of exponent n contained in some 

fixed algebraic closure 𝛺 of F; and 

 

(b) of subgroups B of F𝗑 containing F𝗑n
 as a subgroup of finite index. 

The extension corresponding to B is F[ 
 

 ], the smallest subfield of 𝛺 

containing F and an n
th

 root of each element of B. If E ↔B, then .[E:F] = 

(B:F𝗑n
). 

 

PROOF. For any finite Galois extension E of F, define B(E) = F𝗑 E𝗑n
. 

Then E  F[ ( )
 

 ], and for any group B containing F𝗑n
. as a subgroup of 

finite index, B(F[ 
 

 ])   B. Therefore, 

 

 

 

If E=F is abelian of exponent n, then [E:F]= (B(E):F𝗑n
), and so equalities 

hold throughout:  E = F[ ( )
 

 ] 

 

Next consider a group B containing F𝗑n
 as a subgroup of finite index, and 

let E =F[ 
 

 ]. Then E is a composite of the extensions F[ 
 

 ]for a running 
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through a set ofgenerators for B/F𝗑n
, and so it is a finite abelian extension 

of exponent n. Therefore 

 

 

is an isomorphism. This map sends B/F𝗑n 
isomorphically onto the 

subgroup Hom(G/H, μn) of Hom (G,μn) where H consists of the σ∈ G 

such that ∈ 
 

 / 
 

 = 1 for all a∈ B. Butsuch aσ fixes all  
 

  for a ∈ B, and 

therefore is the identity automorphism on E = F[ 
 

 ]. This shows that 

B(E)= B, and hence E   B(E) and B   F[ 
 

 ]are inverse bijections. 

 

EXAMPLE : (a) The theorem says that the abelian extensions of   of 

exponent 2 are indexed by the subgroups of  𝗑/= 𝗑2
{±1}. This is 

certainly true. 

(b) The theorem says that the finite abelian extensions of   of exponent 

2 are indexed by the finite subgroups of  𝗑/  𝗑2
. Modulo squares, every 

nonzero rational number has a unique representative of the form ±p1…pr 

with the pi prime numbers. Therefore  𝗑/  𝗑2
is a direct sum of cyclic 

groups of order 2 indexed by the prime numbers plus  . The 

extension corresponding to the subgroup generated by the primes p1…pr 

(and -1) is obtained by adjoining the square roots of p1…pr (and -1) to  . 

 

7.4.3 REMARK :Let E be an abelian extension of F of exponent n, and 

let 

 

for the case n = 2. 
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7.5 PROOF OF GALOIS’S SOLVABILITY 

THEOREM 
 

7.5.1 LEMMA :Let f ∈ F[X] be separable, and let F' be a field 

containing F . Then the Galois group of f as an element of F'[X] is a 

subgroup of the Galois group of f as an element of F[X] 

 

PROOF. Let E' be a splitting field for f over F', and let α1,….,αm be the 

roots of f [X] inE'. Then E = F[α1,….,αm] is a splitting field of f over F. 

Every element of Gal.(E'/F')permutes the αi and so maps E into itself. 

The map σ σ |E is an injection Gal.(E'/F')→Gal(E/F) 

 

7.5.2 THEOREM : Let F be a field of characteristic 0. A polynomial in 

F[X] is solvable if and only if its Galois group is solvable. 

 

PROOF.⇐ Let f ∈ F[X] have solvable Galois group Gf . Let F' = F[Ϛ] 

where Ϛ is a primitive nth root of 1 for some large n—for example, n = 

(degf)!will do. The lemma shows that the Galois group G of f as an 

element of F'[X] is a subgroup of Gf, and hence is also solvable (GT 

6.6a). This means that there is a sequence of subgroups 

 

 

 

such that each Gi is normal in Gi-1and Gi-1/Gi is cyclic. Let E be a 

splitting field off [X] over F', and let Fi =E
Gi

. We have a sequence of 

fields 

 

 

 

with Fi cyclic over Fi-1. Theorem 7.3.1 shows that Fi=Fi-1[αi] with αi
[Fi :Fi-

1]∈Fi-1,each i, and this shows that f is solvable. 

 

⇒It suffices to show that Gf is a quotient of a solvable group (GT 6.6a). 

Hence itsuffices to find a solvable extension Ẽ of F such that f [X] splits 

in Ẽ[X]. 
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We are given that there exists a tower of fields 

 

 

 

such that 

 

(a) Fi =Fi-1[αi]. α 
  ∈Fi-1; 

(b) Fm contains a splitting field for f: 

 

Let n= r1···rm, and let 𝛺be a field Galois over F and containing (a copy 

of) Fm and aprimitive nth root Ϛ of 1. For example, choose a primitive 

element  for Fm over F and take  to be a splitting field of g(X)(X
n–1

) 

where g(X) is the minimum polynomial of   over F . Alternatively, Let G 

be the Galois group of 𝛺F, and let Ẽ be the Galois closure of Fm[Ϛ] in 𝛺. 

Ẽ is the composite of the fieldsσFm[Ϛ]σ∈ G, and so it is generated over F 

by the elements 

 

 

 

 

 

in which each field F'' is obtained from its predecessor F'  by adjoining 

an rth root of an element of F' (r = r1,….rm, or n). According to (5.8) and 

(5.26), each of these extensions is abelian (and even cyclic after the first), 

and so Ẽ=F is a solvable extension. 

7.6 SYMMETRIC POLYNOMIALS 
 

Let R be a commutative ring .A polynomial P(X1,….,Xn) ∈ R[X1,….,Xn] 

is said to be symmetric if it is unchanged when its variables are 

permuted, i.e., if 

 

 

 

For example 
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are each symmetric because pr is the sum of all monomials of degree r 

made up out of distinct Xi. These particular polynomials are called the 

elementary symmetric polynomials. 

 

7.6.1THEOREM (SYMMETRIC POLYNOMIALS THEOREM):  

Every symmetric polynomial P(X1,….,Xn) in R[X1,….,Xn] is equal to a 

polynomial in the elementary symmetric polynomials with coefficients in 

R, i.e., P ∈ R[p1,….,pn]. 

 

PROOF. We define an ordering on the monomials in the Xi by requiring 

that 

 

 

Because P is symmetric, it contains all monomials obtained from 

  
       

  by permutingthe X. Hence i1≥ i2≥··· ≥in. 

The highest monomial in pi is X1···Xi , and it follows that the highest 

monomial in   
       

   is 
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is strictly less than the highest monomial in P(X1,….,Xn). We can repeat 

this argument with the polynomial (14), and after a finite number of 

steps, we will arrive at a representation of P as a polynomial in p1,….,pn 

 

7.6.2 REMARK : (a) The proof is algorithmic. Consider, for example, 

 

 

 

(b) The expression of P as a polynomial in the pi in (5.35) is unique. 

Otherwise, bysubtracting, we would get a nontrivial polynomial 

Q.(p1,….,pn) in the pi which is zerowhen expressed as a polynomial in 

the Xi . But the highest monomials (13) in the polynomials  
       

   are 

distinct (the map (d1,….,dn)→(d1+ ··· + dn,….,dn) is injective), and so 

they can’t cancel. 

Let 

 

 

Thus the elementary symmetric polynomials in the roots of f (X) lie in R, 

and so the theorem implies that every symmetric polynomial in the roots 

of f (X) lies in R. For example, the discriminant 
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of f lies in R. 

7.6.3THEOREM 5.37 (SYMMETRIC FUNCTIONS THEOREM) Let F 

be a field. When Sn acts on F(X1,….,Xn) by permuting the Xi , the field of 

invariants is F(p1,….,pn) 

 

PROOF. Let f ∈ F(X1,….,Xn)be symmetric (i.e., fixed by Sn). Set f = 

g/h, g,h∈F[X1,….,Xn]. The polynomials H =∏       
 and Hf are 

symmetric, and therefore liein F [p1,….,pn] by 5.35. Hence their quotient 

f=Hf /H lies in F(p1,….,pn). 

 

7.6.4 COROLLARY : The field F(X1,….,Xn) is Galois over F(p1,….,pn) 

with Galois groupSn (acting by permuting the Xi). 

 

PROOF. We have shown that F(p1,….,pn) = F(X1,….,Xn)
Sn

, and so this 

follows  

 

The field F(X1,….,Xn) is the splitting field over F(p1,….,pn) of 

 

 

Therefore, the Galois group of g(T)∈ F(p1,….,pn)[T] is Sn. 

Check your Progress-2 

3. Provide Galois’s solvability theorem 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 

4. State  and prove  SYMMETRIC FUNCTIONS THEOREM 

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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7.7 LETS SUM UP 
 

We have discussed the application of Galois theory  like Comprehend 

Hilbert’s Theorem 90, Enumerate Kummer theory and Proof of Galois’s 

solvability theorem. We have discussed various concepts like Cyclic 

extensions and Symmetric polynomials 

 

7.8 KEYWORDS 
 

Solvable extension: a field extension whose Galois group is 

a solvable group 

 

Subgroup - A subgroup of a group G is a subset of G that forms a 

group with the same law of composition 

7.9 QUESTIONS FOR REVIEW 
 

1. Prove that the rational solutions a ,b ∈   of Pythagoras’s equation a
2
 + 

b
2
 = 1 are of 

the form 

 

 

and deduce that every right triangle with integer sides has sides of length 

 

 

for some integers d, m, and n (Hint: Apply Hilbert’s Theorem 90 to the 

extension   [i]/ .) 

2. Explain Kummer theory 
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7.11 ANSWERS TO CHECK YOUR 

PROGRESS 
 

1.  Provide the explanation and example – 7.2  

2. Provide statement and proof of theorem – 7.2.1 & 7.2.2 

3. Provide statement of Lemma and theorem  – 7.5.1 & 7.5.2 

4. Provide statement and proof of theorem – 7.6.3  

 


